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Abstract: We analyze a stochastic dynamic finite-horizon economic model
with climate change, in which the social planner faces uncertainty about fu-
ture climate change and its economic damages. Our model (SSICE) is a sim-
plified version of Nordhaus’ deterministic DICE model, but it incorporates,
possibly heavy-tailed, stochasticity. We develop a regression-based numer-
ical method for solving a general class of dynamic finite-horizon economy-
climate models with potentially heavy-tailed uncertainty and general utility
functions. We then apply this method to SSICE and examine the effects of
light- and heavy-tailed uncertainty. The results indicate that the effects can
be substantial.
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1 Introduction

The current economy-climate debate raises many difficult issues. Only one of
these issues is discussed in the current paper, namely the question if and how
abatement, consumption, and investment policies are affected by catastrophic
risk. Economy-climate policies are typically analyzed using Integrated As-
sessment Models (IAMs) that describe the complex interplay between climate
and the economy. Our paper augments a widely-used deterministic TAM by
incorporating (potentially heavy-tailed) risk related to future climate change
and its associated economic damage, and analyzes its impact on the policy
variables.

Our model is based on Nordhaus’ (2008, 2013) dynamic integrated model
of climate and the economy (DICE), which has become an important bench-
mark TAM, not only in the theoretical literature but also serving as a tool for
economy-climate policy analysis by the US government. The deterministic
version of our model is a simplified version of DICE, and we shall refer to it as
SICE (= simplified DICE). The simplifications occur primarily in the specifi-
cation of the dynamics for carbon dioxide and temperature and are chosen to
achieve maximum parsimony. The resulting equations thus contain the bare
minimum required to analyze the relevant economy-climate issues. Despite
its simplicity the SICE model yields optimal policies that closely resemble
those of Nordhaus.

The SICE model serves as our starting point but, like DICE, it is de-
terministic. To represent uncertainty and motivated by the developments in
Manne and Richels (1992), Nordhaus (1994), Roughgarden and Schneider
(1999), Kelly and Kolstad (1999), Keller et al. (2004), Mastrandrea and
Schneider (2004), Leach (2007), Weitzman (2009), and in particular Acker-
man et al. (2010), we introduce to SICE random shocks featuring poten-
tially heavy-tailed risk. We refer to the resulting model as stochastic SICE
(SSICE). We initially focus attention on uncertainty through the damage
function and, later; in an extension of this base stochastic model, we shall
also account for an uncertain emissions-to-output ratio and uncertainty in
technological efficiency.

To solve the stochastic dynamic economy-climate model thus obtained, we
embed the associated optimization problem into a general class of stochastic
dynamic finite-horizon optimization problems. We next develop a regression-
based method for solving such problems. Our solution method is flexible in
the sense that it allows for a wide class of utility functions and that it imposes
only weak assumptions on the stochasticity, e.g., permitting both light- and
heavy-tailed risks, and stochastic parameters.

In the context of SSICE we show formally that heavy-tailed risk is only



compatible with some utility functions, and in particular that it is not com-
patible with power utility. To do so, we invoke the general decision-theoretic
results of Ikefuji et al. (2015) and apply these to the current setting. We
propose to use the Pareto utility function to represent preferences in the
presence of heavy-tailed risk. This utility function was introduced by Ikefuji
et al. (2013) and advocated by Cerreia-Vioglio et al. (2015). Pareto utility
avoids the drawbacks ‘near the edges’ that standard families of utility func-
tions such as power and exponential utility exhibit, and is particularly suited
for heavy-tailed risk analysis.

Our four main findings are as follows. First, the introduction of light-
tailed uncertainty through the damage function of SICE leads to a reduction
of consumption and an increase of investment in the early periods. Condi-
tional upon the shocks realizing their expected value, namely zero, in the
first few periods, we find the opposite pattern in later periods. This applies
to both power and Pareto utility and is the result of precautionary savings
(Kimball, 1990). Similarly, abatement increases in the early periods, lead-
ing to lower concentration levels. This can be viewed as the equivalent of
precautionary savings in the climate component of our model. The changes
in the optimal policy variables are monotone in the variance of the shock.
The changes remain small as long as the shocks take values close to their
expectation, that is, in the ‘center’ of the distribution.

Second, when the light-tailed shocks take larger negative values, the op-
timal policies are more affected: pronounced differences occur in the optimal
policy and state variables at the ‘edges’, both within and between mod-
els. In particular, because a power utility maximizer has a stronger motive
to smooth consumption than a Pareto utility maximizer, he or she has a
stronger desire to keep up consumption in adverse scenarios at the cost of
precautionary action. This effect is the result of a trade-off between maintain-
ing current consumption and taking intensified precautionary action under
adverse circumstances. We find that the Pareto utility maximizer tends to
favor a larger substitution from current consumption to intensified precau-
tionary action when compared to conventional power utility. This effect is
distinct from the regular precautionary savings motive — the intertempo-
ral substitution effect from current certain to future uncertain consumption
— which it more (Pareto) or less (power) amplifies. Thus, compared to a
Pareto utility maximizer, a power utility social planner consumes too much
and abates too little under adverse circumstances.

Third, allowing for heavy-tailed uncertainty making catastrophic risk sce-
narios more pronounced, our first main finding broadly remains valid under
Pareto utility, while our second main finding gets reinforced, with power util-
ity becoming incompatible in this case. Indeed, for a power utility maximizer,
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the expectation of the intertemporal marginal rate of substitution becomes
infinite when considering heavy-tailed uncertainty in the SSICE model.

Fourth, the impact of uncertainty in the damage function dominates the
impact of an uncertain emissions-to-output ratio and closely resembles the
impact of uncertainty through technological efficiency in the center of the
distribution. At the edges, however, when adverse scenarios for technological
efficiency realize, optimal abatement is suppressed compared to the adverse
scenarios in which economic damages are relatively large.

Although there are many papers on climate policy under uncertainty, the
literature on the interplay between climate and the economy under uncer-
tainty is much smaller. The existing IAMs which explicitly include uncer-
tainty can be divided in three classes: (i) stochastic dynamic IAMs with
learning, but no consideration of catastrophe; (ii) deterministic IAMs con-
sidering catastrophe; and (iii) stochastic dynamic IAMs considering tipping
points.

In class (i), Kelly and Kolstad (1999) explore Bayesian learning about
the relationship between greenhouse gas levels and global mean temperature
changes, analyze when uncertainty is resolved, and show that the expected
learning time depends on the variance of the temperature realisations and
varies directly with the emission policy. Extensions of Kelly and Kolstad
(1999) are provided in Keller et al. (2004), Leach (2007), and Traeger (2014).
Jensen and Traeger (2014) study the effects of climate sensitivity uncertainty,
learning, and temperature stochasticity separately, and find precautionary
savings in the presence of the stochasticity of temperature, while Bayesian
learning about climate sensitivity raises the abatement rate and hence the
optimal carbon tax.

In class (ii), Mastrandrea and Schneider (2004), Ackerman et al. (2010),
Dietz (2011), Hwang et al. (2013), and Gillingham et al. (2015) study the
implication of catastrophic risks in IAMs. These papers focus on examining
the shape of the damage function and the climate sensitivity parameter. We
mention in particular the relevant contribution by Ackerman et al. (2010),
who analyze the impact of parameter uncertainty in the specification of the
damage function and/or in the temperature equation on the optimal poli-
cies. Their approach consists in first simulating the parameter(s) of interest
by drawing from a pre-specified probability distribution, and then determinis-
tically solving DICE for each realization of the parameter(s), thus obtaining
a ‘distribution’ of the optimal policies. This approach provides an assess-
ment of the sensitivity and robustness of the optimal policies to parameter
assumptions within the context of a deterministic economy-climate model.
Also, Gillingham et al. (2015) conduct an extensive Monte Carlo analysis
for six IAMs, to analyze how model output responds to model misspecifica-



tion due to parameter uncertainty, by estimating surface-response functions.
The current paper, in contrast, solves a stochastic optimization problem.
Our social planner takes potentially heavy-tailed stochasticity in the damage
function (and the emissions-to-output ratio and technological efficiency, in
extensions of the model) already into account when solving for the optimal
policies.

In class (iii), Lemoine and Traeger (2014), Lontzek et al. (2015), Cai et
al. (2015, 2016), and Berger et al. (2016) explore how the risk of stochas-
tically uncertain environmental tipping points affects climate policy, using
a stochastic IAM based on the DICE model. Berger et al. (2016) adopt
non-expected utility preferences to accommodate aversion to both risk and
ambiguity when analyzing tipping elements in climate change, employing
a two-period model in which uncertainty resolves in 2100. The paper by
Cai et al. (2015) is particularly relevant for us. They extend conventional
economy-climate analysis based on deterministic IAMs to allow for a range
of stochastic features. In particular, they conduct an extensive analysis of
carbon emission policies in a stochastic environment. A key distinction be-
tween their work and ours is that they only allow shocks with a bounded
probability distribution, thus ruling out the normal or the Student distribu-
tion, in order to avoid catastrophic risk scenarios (‘tail events’). In contrast,
risks with unbounded support and potentially featuring heavy tails, as well
as the catastrophic risk scenarios they may induce, are at the heart of our
analysis.

Our paper also relates to the literature on numerical methods for dynamic
programming and stochastic optimal control. The algorithm that we develop
for solving SSICE is inspired by the Least Squares Monte Carlo (LSMC) ap-
proach introduced by Longstaff and Schwartz (2001); see also Carriere (1996),
Clément et al. (2002), and Powell (2011) for further details, including conver-
gence results. LSMC has been successfully applied to a variety of problems
in financial economics and operations research; see e.g., Brandt et al. (2005),
who use LSMC to solve a portfolio choice problem with non-standard pref-
erences, Laeven and Stadje (2014), who solve problems of optimal portfolio
choice and indifference valuation under general asset price dynamics and in
the presence of model uncertainty using LSMC, and Kratschmer et al. (2015),
who employ LSMC to analyze model uncertainty in optimal stopping.

The paper is organized as follows. In Section 2] we introduce SICE, an
economy-climate model of the DICE type (Nordhaus, 2013). In Section [3{ we
introduce uncertainty into SICE. In Section 4| we provide a formal description
of a general class of stochastic dynamic finite-horizon economy-climate mod-
els, allowing for heavy-tailed uncertainty and general utility functions and
embedding SSICE as a special case, and develop a regression-based method



for solving such models. In Section |5 we show, in the context of our model,
that heavy-tailed uncertainty is not compatible with all utility functions, in
particular power utility, and propose an alternative utility function: Pareto
utility. In Section [6] we present the analysis of our SSICE model and discuss
its implications, while some extensions are presented in Section [7} Section
concludes.

2 A simplified economy-climate model

We present a simple economy-climate model in the spirit of Nordhaus and
Yang (1996) and Nordhaus (2008, 2013). Nordhaus’ DICE models have two
main versions: 2007 and 2013, which are described in Nordhaus (2008) and
Nordhaus (2013), respectively, and in user manuals available from Nord-
haus’ website. Our model retains all essential features of both versions of
DICE, but it contains much fewer equations (primarily because of simpli-
fications in the carbon dioxide concentrations and temperature equations),
and is therefore more transparent and numerically easier to handle. While
the methods developed in this paper can readily accommodate more complex
economy-climate models and their stochastic extensions, we prefer maximum
parsimony when analyzing the fundamental question of how catastrophic risk
impacts on optimal abatement, consumption, and investment.

Everybody works. In period ¢, the labor force L; together with the capital
stock K; generate GDP Y, through a Cobb-Douglas production function

Y, = AK L7 (0<vy<1), (1)

where A; represents technological efficiency and + is the elasticity of capital.
Capital is accumulated through

Kt+1 = (1 — 5)Kt + I, (0 << 1), (2)

where [; denotes investment and ¢ is the depreciation rate of capital. Pro-
duction generates carbon dioxide (CO,) emissions Ej:

Ey=o0y(1— )Yy, (3)

where o, denotes the emissions-to-output ratio for CO,, and p; is the abate-
ment fraction for CO,. Total CO, emissions consist of industrial emissions
E; and non-industrial (‘land-use’) emissions. We denote the latter type by
E? and consider it to be exogenous to our model, as in Nordhaus. The
associated CO, concentration M, accumulates through

My = (1 — ¢)M; + E + E, (0<o<1), (4)
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where ¢ is the depreciation rate of CO, (rate of removal from the atmo-
sphere). Temperature H; develops according to

Hyp1 = no +mHy +n2log(M) (m >0, 2 >0). (5)

The temperature and climate systems in and are simplified versions
of those in Nordhaus (2013), and this represents the main difference between
our model and DICE.

In each period ¢, the fraction of GDP not spent on abatement or ‘damage’
is either consumed (Cy) or invested (I;) along the budget constraint

(1 — wt)-Dt}/t == Ot + ]t. (6)

The damage function D, depends only on temperature and satisfies 0 <
D; <1, where D; = 1 represents the optimal temperature for the economy.
Deviations from the optimal temperature cause damage. As in Nordhaus
(2013) we specify D, as

1

D= ——
P14 ¢H?

(€ >0). (7)
For very high and very low temperatures D, approaches zero. The opti-
mal value D; = 1 occurs at H; = 0, the temperature in 1900. Of course,
other forms of the damage function are possible; see Stern (2007), Weitzman
(2009), and Ackerman et al. (2010).

A fraction w; of D;Y,; is spent on abatement, and we specify the abatement
cost fraction as

we=Pi  (0>1). (8)

When p; increases then so does wy, and a larger fraction of GDP will be spent
on abatement. These equations capture the essence of the DICE models. No-
tice that many theoretical models treat the labor force L; as a flow variable.
Here, however, labor force equals population, which is a stock variable.

The eight equations — imply a condensed system consisting of three
dynamic equations (in the state variables K, M, and H) in terms of the
policy variables I and p and exogenous variables and parameters:

K =(1-0)K, + I, 9)
Hyp = no +mHy + n2log(Mi14), (10)
My = (1= )My + E{ + oy(1 — ) ALK Ly, (11)

and, through the budget constraint

(1 - @Dt,uf)AtK]L%_v
1+ EH? ’

C,+ 1, = (12)



a third policy variable C' in terms of I and pu and the state variables (and
exogenous variables and parameters).

As in Nordhaus (2013) one period is five years. Period 0 refers to the time
interval 2010-2014, period 1 to 2015-2019, and so on. Stock variables are
measured at the beginning of the period; for example, K, denotes capital in
the year 2010. We choose the exogenous variables such that L; > 0, A; > 0,
E? >0, 0, >0, and 0 < ¢y < 1. The policy variables must satisfy

C;>20, >0, 0<pu <1 (13)
Given a utility function U we define welfare in period ¢ as
Wt — LtU(Ct/Lt) (14)

The policy maker has a finite horizon, and maximizes total discounted wel-
fare,

(1+p)t

where p denotes the discount rate. Letting  denote per capita consumption,
the utility function U(x) is assumed to be defined and strictly concave for
all x > 0. There are many such functions, but a popular choice is

W=>Y Wi 0<p<1), (15)

1
where o denotes the elasticity of marginal utility of consumption. This is
the so-called power function. Many authors, including Nordhaus, select this
function. In earlier versions of the DICE model, Nordhaus (2008) chooses
a = 2 in which case U(x) =1 — 1/z. Also popular is a = 1; see Kelly and
Kolstad (1999) and Stern (2007). We use the value maintained in the 2013
version of the DICE model, namely a = 1.45.

Table 1: Comparison of state variables in DICE and SICE models

K.Y, M,JY, H,
DICE SICE DICE SICE DICE SICE
2010 2.1246 2.1244 12.8889 12.8876 0.8300 0.8300
2035 2.2017 2.2124 6.8168  6.8446 1.4037 1.4279
2060 2.2887 2.3031 4.2907  4.4201 2.0673 2.1219
2085 2.3627 2.3759 2.8942  3.1746 2.6864 2.8467

The parameter values and initial levels are presented and discussed in Ta-

ble[din Appendix A. Our simple model (hereafter, SICE = simplified DICE)
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produces optimal values over 25 periods (t = 0,...,24). Since the final peri-
ods are not representative because of the terminal condition, we only report
the first 16 time periods (¢t = 0,...,15) covering 75 years. The results dur-
ing those 75 years (obtained under power utility, like Nordhaus) are close,
although not identical, to those of Nordhaus, as shown in Table [I. A more
detailed comparison is provided in Appendix A.

3 Stochastic SICE

We now introduce uncertainty in the SICE model, focussing on the uncer-
tainty about the economic impact of future climate change. Thus we obtain
a stylized stochastic integrated assessment model of climate economics, to
which we refer as SSICE (= stochastic SICE).

Stochasticity is introduced in SICE by adding two random shocks u; ; and
ug, to the condensed system defined by the three dynamic equations @—
and the budget constraint . More precisely, we adjust and to

{ M1 = (1— )M, + E? + (1 — pe) By g, (17)
Cy+ I, = (1 - ¢tﬂf)B2,tU2,t7 (18)

respectively, where

_ AK) LY
Bt = AKYLY B,, — —tt—t 19
1,t O Ay Ly 2,t 1+€Ht2’ ( )
and
Uy = e T 2ement, Ugy = e TS/ 2 (20)

The normalizing constants e~7i/2 and e~"/2 are chosen such that E(uy,;) =
E(uzt) =1 when €4 ~ N(0,1) and ey, ~ N(0, 1). Special cases include:

e 7 =0, 7o > 0: uncertainty through the damage function by modifying
D, in to Dy = Dyusy. This is the case we shall emphasize in
particular;

e 73 > 0, » = 0: uncertainty through the emissions-to-output ratio by
modifying o; in to 0y = oy ¢;

o7 =Ty >0and €, = €y gncertainty through technological efficiency
by modifying A4; in (1) to A; = Asug;. This is the case emphasized in
Cai et al. (2015).
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The general formulation in and thus encompasses a rich spectrum
of uncertainties: we can use it to examine how damage and mitigation un-
certainty interacts with climate change policies, but also how uncertainty in
productivity or in the emissions-to-output ratio interacts with such policies.
We shall first focus on damage and mitigation uncertainty through ey, but
later we shall discuss all cases.

We notice for later reference that both By ; and By, are positive for all ¢.
This follows because the exogenous variables A;, L;, and o; are assumed to
be positive for all ¢; the parameters 6 and £ satisfy 0 < 6 < 1 and & > 0; the
initial condition Ky > 0 holds; and K; > (1 — 0)'Ky > 0 since I, > 0. We
also notice that consumption is bounded by

C,<Ci+ 1L =(1- wt/i?)BuUzt < Bougy = Bz,teffg/QeTm’t, (21)

since I; > 0, ¢y > 0, uy > 0, Byy > 0, and ugy > 0 (with probability one).

We shall consider both light- and heavy-tailed risk. If the €5, are indepen-
dent and identically distributed (iid) and follow a normal distribution N(0, 1),
then the moments of uy, exist, and we have E(uy,;) = 1 and var(ug,) = ™ —1.
Since the distribution of uy; is heavily skewed, more uncertainty (higher 7)
implies more probability mass of uy; close to zero. If, however, we move only
one step away from the normal distribution and assume, e.g., that ey, follows
a Student distribution with any (finite) degrees of freedom, then the expecta-
tion is infinite (Geweke, 2001). The analysis in, among others, Dietz (2011),
Pindyck (2011), Buchholz and Schymura (2012), and Hwang et al. (2013)
suggests that heavy-tailed risk plays an important role in the economics of
climate change.

If 75 > 0 then the assumption of iid distributed errors €, is sufficient to
generate the possibility of incompatibility between preferences and distribu-
tional assumptions, as discussed and proved in Section [5] The algorithm we
propose in Section [4] can also handle more sophisticated error assumptions.

4 Optimization problem and solution algo-
rithm

In this section we discuss a class of stochastic dynamic finite-horizon op-
timization problems to which the SSICE model in Section [3| belongs as a
special case, and develop a numerical method to solve such problems. We
first introduce some notation, define our general class of optimization prob-
lems, and show how it encompasses SSICE as a special case. Then we design
a regression-based algorithm to numerically solve optimization problems in
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this class. The optimization problem that we consider is a challenging one,
because of the nonlinearities induced by the economy-climate model, the de-
sired generality of preferences and beliefs, and the aim to accurately capture
tail-risk behavior far away from a rapidly evolving steady state. We shall
indicate how our solution algorithm deals with each of these challenges.

4.1 SSICE as a stochastic dynamic finite-horizon opti-
mization problem

The social planner in SSICE faces a discrete-time stochastic dynamic finite-

horizon programming problem, which consists of maximizing expected total
discounted welfare W given in subject to the SSICE model specified in
the condensed system of equations @D— and —.

To facilitate the discussion of our optimization problem, we express it
using the nomenclature of dynamic optimization; see, e.g., Bertsekas (2005)
or Powell (2011). We start by considering a discrete-time setup with control
variables, state variables, and stochastic drivers, adapted to an underlying
filtered probability space. The time-t state variables are stacked into a vector
x;, the time-t control variables into a vector z; and the time-t stochastic
drivers into a vector €. In SSICE, the prime state variables are the capital
stock K, temperature H;, and carbon dioxide concentrations M;, while the
prime control variables are consumption C; and the abatement fraction p;.
Stochasticity enters SSICE through €; = (€14, €24).

For given values of (zy, z;, ¢;), and given the exogenous variables and pa-
rameters at time ¢, all other endogenous variables in the model are supposed
to be known at time ¢. In SSICE, the exogenous variables and parameters
are: the initial values of the state variables, (Ky, Hy, My), the time-varying
exogenous stock variables and parameters (A, Ly, ¥, 0¢), the time-invariant
parameters (7, 6, p, @, &, 0,10, M1, 112), and the stochasticity parameters (11, 7).
The remaining endogenous variables in the model — investment [;, emissions
E;, the abatement cost fraction w,;, welfare W;, output Y;, and damage D,
— are determined by the prime control and state variables, the exogenous
variables and the parameters. For example, the control variable investment,
I;, is obtained from the budget constraint and the state variable GDP,
Y;, follows from the identity (). Similarly, explicit expressions depending on
the prime state and control variables and stochastic drivers are obtained for
all other state and control variables that are not contained in x; or z; under
SSICE. Given the controls, the discrete-time process of state variables is as-
sumed to be a controlled Markov process. The Markov property is essential
in our development. For ease of exposition we assume in the present section
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that the {¢} are independent over time, but this assumption can be relaxed.
(Removing the requirement that the {¢;} are independent over time means
that the value function and its approximation at time ¢ introduced below will
explicitly depend on the stochasticity vector €;_;.)

In general, the system of prime state variables evolves dynamically ac-
cording to a sequence of vector functions f; taking values on the support
of z;:

Ti41 = ft(%:, 2t Gt)-

By allowing f; to be a time-varying function, we accommodate arbitrary time
paths for exogenous variables and parameters. In particular, the function f;
in the SSICE model is given by @, and .

The decision maker seeks to implement the optimal policy, while satisfying
the constraints imposed by the model. The constraints on the time-t control
variables z; are represented by a time-varying set Z;(zy,¢€;) that depends
in particular on the current value of the state vector z; and the stochastic
driver €;. Maximization is then over

2y € Zt(l't, Gt). (22)
For the SSICE model this set of constraints specializes to:

1 - wt/ﬁ?) AtKthlify 6_7'22/2 eT2€2,t

(
0<C, <
== 1+ EH?

and
0<pu <L

The decision maker’s objective is to maximize his/her evaluation of a stream
of payoffs (or rewards) by optimally selecting the control variables. Denote by
Vs (0 < s < T') the maximum of the evaluation of the payoff stream collected
in periods s through 7T, given all the information available at time s — 1 and
subject to the constraints in ([22)):

Vs(zs) = max Eg 4
Zsyeer 2T

ngzt)] (23)

t=s
subject to

2t € Zt(l't, €t> (S S t S T),
T = fi(we, 2 6) (s<t<T—1),

where ¢; is the decision maker’s time-t specific objective function and E,
is short-hand notation for the conditional expectation with respect to the
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filtration at time s. The function Vj is referred to as the value function. The
corresponding Bellman equation is given by
Vi) = max  Eyq[gi(2) + BViga (fe(e, 2, €0))] (24)

2 € Z¢(we,€t)

where [ is a discount factor (0 < # < 1). The time-t objective function g(z;)
in the SSICE model is given by

L, U(C,/Ly)
(I+p)t 7

where U is the utility function. The discount factor in SSICE is equal to
B=1/1+p).

If the value function in period ¢ + 1 is known, then Equation is a
static optimization problem in the time-t control variables z;. The connection
between the value function at time ¢ and the value function at time ¢t 4 1, as
stipulated by the Bellman equation, allows the decision maker to maximize
his/her evaluation recursively by backward induction. Indeed, because all
variables including the realizations of stochasticity are observed in each pe-
riod, the decision maker first determines the optimal control variables in the
final period, depending on the other variables and parameters in the model
at that time. Then the decision maker maximizes the sum of that part of
the evaluation that pertains to time 7" — 1 and the discounted future value
function, thus proceeding backwards in time.

9¢(2t) =

4.2 Solution algorithm: generic description

We will solve the Bellman equation numerically. Our approach to the com-
putation of the optimal policies is inspired by the Least Squares Monte Carlo
(LSMC) approach introduced by Longstaff and Schwartz (2001) in the con-
text of optimal stopping for American-style derivatives and adapted here to
our discrete-time dynamic stochastic finite-horizon optimization problem; see
also Carriere (1996) and Tsitsiklis and Van Roy (1999).

While it may seem natural to consider all potential future paths of the
variables in our model when conducting optimization, this readily becomes
ineffective in multiple dimensions and over longer time spans, which is the
situation we face in our application. We therefore propose a method based
on Monte Carlo where we simulate a set of future paths of the state variables
and stochastic drivers, and then invoke regression to obtain estimates of the
value function in a recursive fashion. By relying on forward-simulated paths,
our method is relatively efficient. Moreover, because of the use of regres-
sion methods, the method does not require nested simulation, and hence is
computationally fast.
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We start in the final period T" where the value function is given by

VT(%T) = max ETfl[gT(ZT)]. (25)

zr€Zr(xT €T)

Indeed, for our finite-horizon model, the payoff in periods after time 7T is equal
to zero. This implies that Vryi(x71) = 0, so that the Bellman equation
in simplifies to the Bellman equation in (25) at time 7.

At time T (and similarly for earlier time periods), our algorithm then
consists of four steps, as follows.

(a)

First we use a random number generator to draw R values (a7, },) for
r =1,...,R. For SSICE, €. is drawn from a probability distribution
pre-specified in the model, while the value of the state vector z7. is
drawn from a uniform distribution with a wide support. This support
is centered at the optimal value of the state vector in the determin-
istic version of the model (SICE). The two (multivariate) draws are
independent.

Next, for each r, we compute the deterministic quantity v} as the
maximum value of the period-T" objective function given the r-th draw
(2!, €). This specific optimization problem is typically straightforward
at time T'. For example, in the SSICE model, consumption is set equal
to the available budget in the final period, and abatement is set to zero.

We then use regression to approximate the function Vp(zr). To obtain
the approximation, we assume that there exists a set of basis functions
¢;(xzr) and coefficients B;r (j =0,1,2,...) such that

0o J
Vr(zr) = Birgi(zr), and Vi(ar) ~ Y Birdi(r), J € N,
j=0 Jj=0

can serve as an approximation, and, for each r, we decompose the
deterministic maximum v} into the sum of this approximation and an
(r)-specific disturbance v, 1, that is,

J
V=Y Bird(x%) + v
=0

Note that setting ¢o(x7) = 1 corresponds to including a constant term
Bo.r in the approximation.
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(d) Finally, we obtain least-squares estimates of the coefficients in this
approximation, which we denote by 5;7 (j =0, ..., J), and we define

as our approximation to the value function at time 7.

Now consider period T — 1. The corresponding Bellman equation is

VT—1($T—1) =
max Er_s [gr—1(2r—1) + BVr(fr—1(xr_1, 2r-1, €7-1))] -

zr-1€2r—1(Tr—1,67-1)
The algorithm now proceeds as above in four steps: (a) Generate draws
(a1, €p ) for r = 1,... R; (b) Given the r-th draw (2} _,, €} ), com-

pute the deterministic maximum v/}._,, using the approximation Vp obtained
above; (c) Obtain estimates for the coefficients 3;r_; in

J
Vioy = Biradi (@) + veroa
=0

and (d) Define the value function approximation Vy_i(z7_1) to the value
function at time 7' — 1 as

M“‘

VT1$T1 T1¢J$CT 1)-

7=0

Next, we approximate the value function in period 7" — 2, and so on. In
this way we define, recursively, the value function V; for all the time periods
t =0,...,7 in the model. We thus obtain a flexible least-squares Monte-
Carlo-based approach, which accommodates general preferences and beliefs,
is easy to implement, and is effective and efficient.

Partial convergence results for Least Squares Monte Carlo in the context
of optimal stopping and American option pricing are provided by Longstaff
and Schwartz (2001); see also Tsitsiklis and Van Roy (1999). These results
are significantly expanded by Clément et al. (2002); see also Egloff (2005) and
Egloff et al. (2007). Their formal results can be adapted to our discrete-time
optimal control setting, and this allows us to conclude that the regression-
based approximations to the optimal control variables resulting from our
approach converge to the optimal control variables as the number of simula-
tions and the number of basis functions (in this order) tend to infinity. The
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proof is somewhat tedious but conceptually straightforward, and proceeds by
showing first that the regression estimates converge using standard asymp-
totic regression theory, and next (more tedious) that the error propagation
resulting from the backward induction procedure vanishes asymptotically.

4.3 Some practical aspects of the algorithm

The previous subsection provides a generic description of a numerically ef-
ficient algorithm, which computes the solution to a class of discrete-time
stochastic dynamic finite-horizon optimization problems. In our application
of this algorithm to the SSICE model, our goal is to accurately capture the
nonlinear behavior of the model as well as its tail risk behavior potentially far
away from a rapidly evolving steady state. For this reason, the support from
which we generate values for the state variables must be sufficiently wide.
In addition, we need a flexible approximation to V; over this wide support.
We now describe some further details specific to the implementation of our
algorithm.

The support. We need to specify the support from which we draw x}. This
support must be wide enough to capture optimal policies away from the
steady state, because we are specifically interested in optimal policies in the
presence of large negative shocks, i.e., under catastrophic risk, and we want
our approximation to the optimal policies to be accurate in such scenarios.
Let x} denote the state vector under the optimal solution to the deterministic
version of the model (SICE). We draw z} from a uniform distribution with
support [0.6x}, 1.5z;]. Considering even wider supports leads to deteriorat-
ing numerical stability. The first period is of particular importance, as we
will investigate in detail the distribution of the optimal policies under large
negative shocks in that period. In period 0, capital is equal to Ky = 135.
The specified support for K; is now given by [97, 242]. Even under very large
negative shocks in period 0, the specified lower bound of 97 is never binding
for the optimal choice of K.

Number of draws. We must also specify the number of simulation draws R to
be drawn in every time period (each time period consists of five years). The
value of R was determined by trial and error. We started with R = 1,000
simulations per period, and then checked whether the solution is sensitive
to increases in R by steps of 1,000. After R = 5,000, the change in optimal
consumption is less than 0.01. We then conservatively set R = 10,000. Such
a large value for R is feasible because our regression-based approach avoids
nested simulation. This is not only useful to capture tail risk behavior but
also to accommodate general preferences and beliefs.

17



Basis functions. Then we must specify the choice and number of basis func-
tions in the approximation to the value function. To guide our choice de-
scribed below, we inspect the fit of our approximating model. The approxi-
mating model is estimated by a regression of the value function computed at
Vi(z}) on the simulated values of x} at which it is computed. If the residuals
of that regression do not vary systematically with z}, then the approximating
model provides an adequate description of the value function. Visual inspec-
tion of residual plots and model specification tests were used to determine
appropriate candidate models. The value function is approximately sepa-
rable in the state variables, so that we can express the approximate value
function as

Vi(a:) = Vip(Ky) + Vi (M) + Vi (H,).

This separability reduces one nonparametric regression problem with three
continuous variables to three nonparametric regression problems with one
continuous variable. We found that natural splines of degree 5 (for K') and 3
(M, H) provide a good approximation to the value function. Other choices
such as Chebyshev polynomials tend to perform worse when considering wide
supports for the state variables. A more flexible approximation does not
improve the fit, but could affect the stability of the solution. The wide
support that we consider for the state variables implies that we rarely have
to extrapolate outside the domain of the observed values of (K, M, H). In
those few cases, the natural splines extrapolate linearly from the lower and
upper bound of the supports discussed above.

Code and testing details. The stochastic dynamic optimization problem is
solved over 25 periods, and we report for periods 0 through 15, capturing
75 years. The code is written in R and is available from the authors upon
request. It was tested with R version 3.3.1, on a desktop computer with Core
i7-2600 architecture running Ubuntu 16.04.

5 Compatibility of preferences and stochas-
ticity

Considerable care is required when combining the expected utility paradigm
with distributional assumptions, a fact known since Bernoulli (1738) and
Menger (1934). The numerical methods developed in Section W are valid,
in principle, for general expected utility preferences, but this is only true if
these preferences are compatible with the assumed stochasticity. If not, then
expected utility or expected marginal utility can become infinite, a situation
which we wish to avoid. Hence, if only weak assumptions on the stochasticity
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are imposed, then some compatibility conditions are required to ensure that
our model’s stochastic optimization problem is well posed. In fact, we shall
place no restrictions on the stochasticity and allow for arbitrarily heavy-
tailed risks. Not all families of utility functions are then compatible and this
raises the question: which families of utility functions are and which are not
compatible with arbitrarily heavy-tailed risks? To answer this question we
invoke the general decision-theoretic results of Ikefuji et al. (2015) and apply
these to SSICE, using backward induction.

We know from Sectionthat By, = AK] L7 /(14+€H?) > 0, and hence,
using , that

0 < C; < Byge 8/2eme2, (26)

Now, A; and L; are exogenous, and K; and H, are deterministic given all
information at time ¢t — 1, since K; depends on K;_; and I;_;, while H;
depends on K; 1, H;_1, M;_1, jti—1, €14—1, and exogenous variables. Hence,
By, is deterministic given all information at time ¢ — 1.

Since the social planner in our setup has time-additive expected utility
preferences, the inequality implies that inequality (2) in Ikefuji et al.
(2015) would be satisfied if C; were the only choice variable. In fact, there
are three choice variables: I;, u;, and C;. It is obvious, however, that in the
final period zero abatement and zero investment are optimal: I} = p} = 0.
Hence, in the final period there is only one choice variable, namely Cr, and
hence the desired inequality is satisfied at time 7.

We can now invoke Proposition 5.2 of Ikefuji et al. (2015), apply it to the
final two periods in our setup, and conclude that if the probability distribu-
tion of €5 7 is heavy-tailed to the left, then expected marginal utility (or the
expected intertemporal marginal rate of substitution) pertaining to time 7'
is infinite whenever the utility function belongs to the power family. Thus,
if we move only slightly away from normality and allow ey to follow, e.g.,
a Student distribution with any degrees of freedom, then expected marginal
utility explodes under power utility. A similar result is true for expected
utility, but we shall not expand on this.

The fragility of expected power utility to heavy-tailed distributional as-
sumptions was noted earlier, e.g. by Geweke (2001). More recently, in the
context of catastrophic climate change, Weitzman (2009) pointed out that
not only expected utility but also expected marginal utility, and hence the
intertemporal marginal rate of substitution, may become infinite with power
utility and heavy-tailed log consumption, inducing unacceptable conclusions
in cost-benefit analyses.

Because of the incompatibility of power utility we need to look for a
different family of utility functions to represent preferences over heavy-tailed
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risks in SSICE. The Pareto family, introduced by Ikefuji et al. (2013) and
given by

N\ —k
Uz)=1— (HX) (k> 0, A>0), (27)

enjoys a combinations of appealing properties especially relevant in heavy-
tailed risk analysis. Let

U//(x)

B _aU"(z)
U'(x)

ARA(z) = e

RRA(z) =

(28)

denote the local indexes of absolute and relative risk aversion. Under power
utility, often referred to as constant RRA utility, we have ARA(0) = o0, 0 <
RRA(0) < oo, and RRA(z) is bounded (in fact constant). Under exponential
utility, given by U(z) = 1 — e®* (A > 0) and often referred to as constant
ARA utility, we have 0 < ARA(0) < oo, RRA(0) = 0, and RRA(z) is
unbounded for large values of x. By contrast, under Pareto utility,
E+1 z(k+1)
ARA(z) = Y RRA(z) = e
so that 0 < ARA(0) < co and ARA(x) is non-negative decreasing and con-
vex, while RRA(0) = 0 and RRA(x) is increasing concave and bounded
between 0 and k + 1. Notice that the property that RRA(0) = 0 does not
imply risk-neutrality at = = 0, since ARA(0) = (k+1)/A > 0.

The family of Pareto utility functions is parsimonious yet flexible. Pareto
utility avoids the drawbacks that the popular families of power (constant
RRA) and exponential (constant ARA) utility exhibit ‘near the edges’. This
includes both the extreme behavior of power utility near the origin, where
ARA becomes infinite, and the extreme behavior of exponential utility for
large x, where RRA increases without bound. In view of Propositions 5.1-
5.3 in Ikefuji et al. (2015), Pareto utility is particularly appropriate for
heavy-tailed risk analysis. It ensures finiteness of both expected utility and
expected marginal utility, irrespective of distributional assumptions; see also
the discussion in Cerreia-Vioglio et al. (2015).

In particular, Proposition 5.2 (or 5.3) of Ikefuji et al. (2015) implies
that, under Pareto utility, expected marginal utility remains finite for any t.
Hence, the expected intertemporal marginal rate of substitution that trades
off current and future consumption remains finite under Pareto utility. Be-
cause of the boundedness of Pareto utility (cf. Proposition 5.1 of Ikefuji et al.,
2015), we see that expected utility also remains finite under Pareto utility, ir-
respective of distributional assumptions. We conclude that the Pareto family
represents a suitable choice of utility functions when analyzing heavy-tailed

risk in SSICE.

: (29)
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6 Main findings

We now have developed a stochastic economy-climate framework and a solu-
tion method, and this permits a variety of applications and analyses, includ-
ing exploring fundamental questions such as whether the social planner would
abate and invest more or less, and how much, in the presence of uncertainty
or under the manifestation of catastrophic risk.

When interpreting the results, it is important to understand whether the
results obtained from IAMs have a normative or a descriptive meaning. While
climate models are typically interpreted descriptively, the use of optimization
suggests a normative perspective. Gordon et al. (1987) noted, however, that
the results derived from IAMs provide an approximation to an economically
efficient market equilibrium, and therefore don’t have a normative meaning
per se.

In the current section, we numerically solve and analyze the base SSICE
model with a simple iid specification of stochasticity. In Section[6.1]we discuss
the parameter choices pertaining to the preferences (i.e., the social planner’s
utility function) and beliefs (i.e., the probability distribution of the shocks),
and in Section we compare the results of the deterministic SICE model
to those of the DICE model.

Then we introduce stochasticity. In Section we analyze the effects of
uncertainty on the optimal abatement, consumption, and investment policies,
focusing on optimal policies along the expected trajectory of the shocks, i.e.,
in the ‘center’ of the probability distribution. In Section we explore the
effects at the ‘edges’ of the probability distribution, that is, we ask what
happens to the optimal policies upon the manifestation of a large negative
shock. In Section we analyze the effect of heavy-tailed versus light-tailed
uncertainty.

In Section [7] we shall consider extensions to the base SSICE model, al-
lowing in particular for uncertainty in the emissions-to-output ratio and un-
certainty through technological efficiency.

6.1 Setting and base parameters

We shall consider both light-tailed and heavy-tailed probability distributions
for the error terms €;, and ey;. Following our discussion in Section [3| we
consider both a normal distribution (light tails) and a Student distribution
(heavy tails). Under normality, the damage function D; = Dyuy; has a finite
expectation. Under a Student distribution, which may be interpreted as
the posterior predictive distribution of a normal distribution with uncertain
standard deviation, its expectation is infinite.
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We need to specify adequate values for the uncertainty parameters 7y
and 7, and for the number of degrees of freedom of the Student distribution.
Suppose €1 = €2 = € and 71 = 75 = 7. The stochasticity as generated by ¢,
captures uncertainty about technological efficiency affecting GDP. Historical
variation in GDP may therefore serve as a sensible proxy for 7. Barro (2009)
calibrates the standard deviation of log GDP to a value of 0.02 on an annual
basis, which corresponds to about 0.045 over a five-year horizon. We will
therefore consider values of 71 and 75 in the range of 0.03 < 71,75 < 0.06.
Throughout this section we focus on uncertainty through the damage func-
tion (1, = 0, 72 > 0) and assume the errors to be iid. Other assumptions on
71 and 7o, in particular (7 > 0, 5 = 0) and (1, = 72 > 0, €14 = €9,), are
postponed to Section [7]

We also need to consider the question of whether or not the stochasticity
is light- or heavy-tailed. A (partial) answer to this question is contained in
Ursia (2010), who claims that the growth rate of GDP features heavy tails.
We choose the number of degrees of freedom of the Student distribution
equal to 10. Our parameter choices then ensure that the summary statistics,
including the ‘tail index’, of output growth rates generated by our model
resemble those observed in empirical data.

Finally, we need to specify values for the parameters of the utility func-
tions. In the 2013 version of the DICE model, Nordhaus uses a power utility
function with constant relative risk aversion coefficient equal to a = 1.45. For
comparability, we choose the same value of & when we employ power utility.
When we consider the Pareto utility function, we wish to mimic power util-
ity along the expected trajectory of €s4, i.e., in the center of the probability
distribution. With this objective in mind we calibrate the parameters of the
Pareto utility function to x = 1.322 and A\ = 0.0108.

6.2 SICE versus DICE

In a nonstochastic world we find that the optimal policy and state variables
under SICE with power utility closely match their counterparts under DICE,
in agreement with our remarks in Section [3] This is true in particular for the
variables pertaining to the economy part of the two models (with a maximum
difference of 0.6% over the periods that we consider). The main differences
between SICE and DICE are contained in the climate part of the two models,
but the discrepancies remain small.

When we move from power utility to Pareto utility, we find that the
optimal policy and state variables under SICE with Pareto utility match
their counterparts under SICE with power utility quite closely, and that this
applies to both the economy and climate parts of the SICE model.
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Appendix A provides more details. It contains, in particular, results for
the control variables in Table 5l and for the state variables in Table [Gl

6.3 Light tails in the center

We now introduce stochasticity and consider the SSICE model with iid nor-
mally distributed errors €y (i.e., light tails), for different values of the degree
of uncertainty 75, and under both power and Pareto utility. (Recall that we
assume 71 = 0 in this section.)

We focus on the ‘center’ of the distribution by considering shocks along
the expected trajectory of e;;. Specifically, the results reported here are de-
rived by solving for the optimal initial (¢ = 0) policies under uncertainty, and
then computing the optimal policies over the following periods 1 to 15 under
uncertainty, by assuming that the realized shocks in the previous periods are
equal to zero.

Table 2: SSICE with normal errors — power versus Pareto

power Pareto

t\ 7y 0.00 0.03 0.06 0.00 0.03 0.06
Consumption C

2010 46.89  46.75  46.36 44.31 44.08 43.91
2035 104.42 104.05 103.81 106.10 106.01 105.48
2060 189.58 187.64 186.02 191.24 189.53 188.02
2085 301.63 304.19 305.68 301.81 302.47 302.77
Investment I;

2010 16.53  16.63  16.93 19.09 19.30 19.37
2035 34.74 3435 34.06 36.24  36.56  37.20
2060 61.61 61.93 61.40 59.88  60.14  59.69
2085 96.83 94.02 92.15 90.15 89.90 89.61
Abatement pu;

2010 0.1523 0.1568 0.1605 0.1642 0.1690 0.1738
2035 0.2435 0.2401 0.2370 0.2371 0.2334 0.2300
2060 0.3277 0.3338 0.3400 0.3004 0.3074 0.3143
2085 0.3728 0.3652 0.3551 0.3383 0.3283 0.3176

The three panels in Table 2| present the results for optimal consumption,
investment, and abatement, respectively. Our benchmark is 7 = 0, which is
the case without uncertainty, that is, SICE. The introduction of light-tailed
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uncertainty to SICE leads to a reduction of consumption in the early periods.
This effect is caused by precautionary savings (Kimball, 1990). Conditional
upon the shocks realizing their expected value, that is zero, in the first few
periods, we find the opposite pattern in later periods. The pattern reverses
around period 15.

In the initial periods, the social planner chooses higher levels of abate-
ment under uncertainty for both power and Pareto utility. This corresponds
to choosing lower levels of concentration, and because concentration has a
negative propagation effect in our model, this behavior is consistent with
precautionary savings. When faced with uncertainty, the social planner also
chooses higher levels of investment in the initial periods, a direct result of the
precautionary savings motive. Our finding that consumption decreases and
initial investment and abatement increase in the presence of uncertainty is
consistent with the results in Cai et al. (2015) in a more complex stochastic
IAM.

The corresponding results for capital K;, carbon concentration M;, and
temperature H; are presented in Table [7] in Appendix B. The patterns in
these tables are consistent with the results of the control variables.

Overall, the effect of uncertainty on the optimal policies is relatively small
when considering a social planner at the center of the probability distribution.
Indeed, we find reasonably small changes in the optimal policy variables as
long as the shocks take values along their expected trajectory. The changes
in optimal control and state variables are virtually always ‘monotone’ in the
variance of the shock as represented by 7.

6.4 Light tails at the edges

In the previous subsection we evaluated the effect of uncertainty on the op-
timal policies in the center of the distribution. Now we analyze the optimal
policies at the ‘edges’, under the manifestation of catastrophic risk (that is,
tail events).

Figures (1| and [2| present optimal consumption C; and optimal abatement
(e as a function of ey, at time ¢ = 0, for both the power and Pareto SSICE
models. Considering SSICE against the benchmark given by SICE but now
allowing the light-tailed shocks to take large negative values, we find that the
optimal policy variables are more affected. Towards the edges we observe pro-
nounced differences in the optimal policy variables, both within and between
the SSICE models.

The lines in the figures are labeled such that 1, 2, and 3 refer to 7, = 0.00,
0.03, and 0.06, respectively; and a and b refer to power and Pareto utility,
respectively. As expected, optimal policy derived under certainty — lines
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Figure 1: Consumption Cy: SSICE with normal errors and 7 = 0.00, 0.03,
and 0.06 — power versus Pareto utility
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Figure 2: Abatement py: SSICE with normal errors and 7 = 0.00, 0.03, and
0.06 — power versus Pareto utility
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(1a) and (1b) — does not respond to negative shocks. Further, there is a
clear ordering in (la), (2a), (3a), and (1b), (2b), (3b), which tells us that
optimal policy at the edges is monotonic in 75.
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A power utility maximizer has a stronger motive to smooth consumption
compared to a Pareto utility maximizer. Under adverse circumstances, the
power utility maximizer keeps consumption at a substantial level, but this
comes at the cost of lower abatement. As a result, the left tail of the dis-
tribution of optimal consumption appears to be lighter under power than
under Pareto utility. While the presence of uncertainty increases abatement
in the initial periods (as found in Section , a power utility maximizer
puts (excessively) large emphasis on keeping up consumption in adverse cir-
cumstances, having a downward pressure on abatement. A Pareto utility
maximizer in adverse circumstances will consume less and abate more than
a power utility maximizer.

6.5 Heavy tails

Heavy-tailed risk is represented by a Student-t distribution. The random
shock €34 is not N(0, 1) anymore but rather follows a ¢-distribution with 10
degrees of freedom, so that var(ey:) = 1.25. Power utility is not compatible
with heavy-tailed risk: its expected intertemporal marginal rate of substitu-
tion trading off current and future uncertain consumption is infinite. Hence,
we only consider Pareto utility.

The three panels in Table [3| report optimal values in the SSICE model
under Pareto utility for consumption, investment, and abatement, both for
light- and heavy-tailed uncertainty, and for different values of 7. In the center
of the distribution, the changes are small when we compare the impact of
heavy-tailed versus light-tailed uncertainty. As in Sections and [6.4] we
observe precautionary savings from initial consumption to investment, we
find reasonably small changes in the optimal policy variables as long as the
shocks take values close to or equal to their expectation (in the center of the
distribution), and we see that the changes are ‘monotone’ in the variance of
the shock.

We also report results at the ‘edges’; see Figure The changes in the
optimal policy variables now become more pronounced, both within and
between the models with light and heavy tails. When large negative shocks
occur, we find that the social planner chooses lower values of consumption
under heavy-tailed risk than under light-tailed risk, favoring spending on
precautionary actions.

In summary, under heavy tails the main findings of Sections broadly
remain valid and those of Section [6.4] are reinforced.
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Table 3: SSICE under Pareto utility — light- versus heavy-tailed

5 = 0.03 5 = 0.06
light heavy light heavy
Consumption Cy
2010 44.08  44.21 43.91 44.11
2035 106.01  105.79 105.48 105.13
2060 189.53 192.06 188.02 192.25
2085 302.47 301.70 302.77 301.47

Investment I,

2010 19.30  19.17 19.37  19.19
2035 36.56  36.67 37.20 37.18
2060 60.14  60.18 29.69  60.51
2085 89.90  90.27 89.61  90.25

Abatement

2010 0.1690 0.1605 0.1738 0.1567
2035 0.2334 0.2394 0.2300 0.2412
2060 0.3074 0.2966 0.3143 0.2923
2085 0.3283 0.3320 0.3176  0.3260

Figure 3: Consumption Cy: SSICE under Pareto utility — normal versus
Student errors with 75 = 0.00, 0.03, and 0.06
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7 Extensions

We generalize the base SSICE model in two directions. First, we allow for
an uncertain emissions-to-output ratio. Next, we allow for uncertainty in
technological efficiency.

7.1 Emissions-to-output uncertainty

We suppose that 71 > 0 and m = 0, so that uncertainty enters SSICE only
through the emissions-to-output ratio oy (see (17)), and not through the
damage function and the budget constraint (see ), as previously. We
analyze how our three main findings in Sections are affected under
this alternative SSICE model.

We consider first the optimal policies under iid normally distributed er-
rors €, where we restrict our attention to the center of the distribution by
considering realizations of € ; along the expected trajectory, as in Section
All three policy variables are now insensitive to the presence of uncertainty
along the expected trajectory: the impact on the optimal policies of uncer-
tainty on the emissions-to-output ratio appears to be negligible in the center
of the distribution. The reason is that the budget constraint is not affected by
uncertainty in the emissions-to-output ratio. Thus, in the center, the effect
of emissions-to-output uncertainty is dominated by the effect of uncertainty
on the damage function analyzed previously. (Detailed results are available
upon request.)

Next, considering the manifestation of tail events analogous to Section
we find an interesting pattern: while optimal consumption remains insensi-
tive to uncertainty in the emissions-to-output ratio, also under tail scenarios,
optimal abatement decreases (increases) when €; o takes large negative (pos-
itive) values. This is illustrated in Figure . This pattern can be explained
by the fact that, in the model, abatement directly ‘acts upon’ the emissions-
to-output ratio, while the latter does not appear in the budget constraint,
contrary to what happens in Section[6.4l Note also that the scenario in which
€10 takes large negative values is in fact a very prosperous (rather than ad-
verse) scenario in which emissions are relatively low compared to output,
thus facilitating lower abatement.

Finally, we analyze the introduction of heavy-tailed risk attached to the
emissions-to-output ratio, using the same distributional assumptions as in
Section [6.5] In this setting, the previous two findings are reconfirmed: insen-
sitivity of the optimal policies along the expected trajectory and decreasing
(increasing) optimal abatement in the extent of a negative (positive) shock
in €.

28



Figure 4: Abatement po: SSICE-extension-I with normal errors and 7 =
0.00, 0.03, and 0.06 — power versus Pareto utility
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7.2 Uncertainty in technological efficiency

We next suppose that 7 = 75 =7 > 0 and € = €2+ = ¢, which means that
uncertainty enters SSICE through technological efficiency A; (see f).
This implies in particular that uncertainty now appears again in the budget
constraint just like in Section [6] and the current extension can technically
be viewed as a marriage between the settings of Sections [6] and [7.I We
analyze again the impact of this alternative specification in the spectrum of
uncertainties that our model formulation accommodates on the three main
findings in Sections |6.3H6.5]

With iid normally distributed errors ¢, taking values along their expected
trajectory, i.e., in a setting analogous to Section|6.3], all three optimal policies
under the current extension closely resemble those observed under the base
SSICE model in Section [6.3] Intuitively, this follows from the insensitivities
of the optimal policies along the expected trajectory observed in Section [7.1
and the fact that the current extension is technically a marriage between the
base model and the first extension.

Next, when catastrophic risk realizes, that is, when ¢, takes large neg-
ative values analogous to the analysis at the edges in Section [6.4] optimal
consumption responds exactly as in Figure |1} However, optimal abatement,
while increasing with more uncertainty (that is, behaving monotonically in
T as in Section , decreases with the extent of the negative shock €g; see

29



Figure 5: Abatement py: SSICE-extension-II with normal errors and 7 =
0.00, 0.03, and 0.06 — power versus Pareto utility
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Figure The latter effect is in part induced by the abatement results in
Section [7.1} illustrated in Figure [4]

Finally, analyzing heavy-tailed uncertainty in technological efficiency, em-
ploying the same distributional assumptions as in Section [6.5], we recover the
exact same pattern as in Figure [3]

Apparently, the impact of uncertainty is similar whether we model it
through its impact in the damage function or through technological effi-
ciency. The key difference between the base SSICE model and our second
extension is that, while uncertainty in technological efficiency increases op-
timal abatement just like uncertainty in the damage function, this effect is
suppressed in adverse technology scenarios in which budgets are lower but
also emissions will automatically be lower, thus facilitating lower abatement.

8 Conclusions

We have developed a stochastic dynamic finite-horizon economic framework
with climate change and a regression-based method for numerically solving
the associated optimization problem. Our framework (SSICE) provides a
parsimonious representation of Nordhaus’ deterministic DICE model, but it
incorporates, possibly heavy-tailed, stochasticity. Upon applying our solu-
tion method to SSICE our analysis reveals that the introduction of uncer-
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tainty into a deterministic integrated assessment model can have a substantial
impact on the optimal policies of abatement, consumption, and investment.
This cannot just be explained by a regular precautionary savings motive.
It is also due to our framework’s recognition (under Pareto utility) of the
benefits of precautionary action in adverse circumstances which can in part
get lost in more conventional economy-climate models (with power utility) in
the mire of a strong desire to keep up consumption. These findings remain
intact, and get reinforced, under heavy tails.

Therefore, precautionary action under conventional integrated assessment
models can be too low if there is no account of uncertainty; if a substitution
from precaution to consumption tends to occur in adverse scenarios; and if
there is no consideration of heavy tails in identifying the optimal abatement,
consumption, and investment policies.
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Appendix A: SICE versus DICE

Implementation of the SICE model of Section [2| requires specification of pa-
rameter values and initial levels. These are presented in Table [4]

Table 4: Parameter values in SICE (simplified DICE) model

Parameter Value Description
Endogenous stocks: initial levels
Ky 135 Capital stock, beginning of period 0
M, 819 CO, concentration, beginning of period 0
H, 0.83 Temperature, beginning of period 0
Technology
v 0.30 Elasticity of capital in production function
) 0.4095 Depreciation rate on capital, per five years
Pollution, damage, and abatement
0] 0.0529 Depreciation rate on CO, concentration,
per five years
¢ 0.00267 Quadratic term, temperature-impact function
0 2.80 Exponent in abatement function
Temperature
s —3.1761 Constant term, temperature equation
m 0.9042 Previous period impact, temperature equation
72 0.4995 CO, concentration impact, temperature equation
Discount rate
p 0.0773 Welfare discount rate, per five years

The parameter values are the same as in DICE-2013 in all cases where we
use the same equations. The initial values of the endogenous stock variables
are also the same as in DICE-2013. In cases where we simplified the equa-
tions, notably the carbon equation ({4]) and the temperature equation , we
had to adjust the parameters.

These adjusted parameters are chosen to mimic DICE-2013. The ex-
ogenous variables L;, A;, o;, and 1 are the same as in DICE-2013. We
let EY = 42.2733 — 0.3128 Elanay, where Eignqy is equal to exogenous ‘land-
use emissions’ as specified in DICE-2013, and the coefficients 42.2733 and
—0.3128 have been calibrated through linear regression and DICE-2013 out-
put so as to bring our climate model close to DICE-2013.

To supplement Table [1| we present some further results for the determin-
istic SICE model; see also Section [6.2]

Table [f] presents results for the control variables consumption, investment,
and abatement. Rather than consumption C; and investment [; we present
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Table 5: Control variables: DICE versus SICE
2010 2035 2060 2085

DICE 0.7395 0.7464 0.7442 0.7358

Consumption power 0.7378 0.7457 0.7448 0.7400
(Cy/Yy) Pareto 0.6973 0.7408 0.7516 0.7526

DICE 0.2587 0.2467 0.2405 0.2373
Investment power 0.2601 0.2481 0.2420 0.2376
(I,/Y}) Pareto 0.3005 0.2530 0.2353 0.2248

DICE 0.0000 0.0016 0.0040 0.0076
Abatement spending power 0.0003 0.0008 0.0013 0.0012
(weDy) Pareto 0.0004 0.0007 0.0010 0.0009

C:/Y; and 1,/Y;, in relative terms. Regarding abatement, we write, using (6]

and ,
Ct _'_ It 2]
Dy = % + wi Dy, We = Yy
t
and present w;D; rather than g itself in the third panel of Table [f so that

the three variables become comparable.

Table 6: State variables: DICE versus SICE
2010 2035 2060 2085

DICE  2.1246 22017 2.2887 2.3627
Capital power 21244 22124 23031 2.3759
(K,/Y)) Pareto  2.1244 2.3319 2.3009 2.2875

DICE 12.8889 6.8168 4.2907 2.8942
Concentration power 12.8876 6.8446 4.4201 3.1746
(M;/Y;) Pareto 12.8876 6.7100 4.4581 3.2698

DICE 0.8300 1.4037 2.0673 2.6864
Temperature  power 0.8300 1.4279 2.1219 2.8467
(H;) Pareto  0.8300 1.4302 2.1359 2.8790

Table [6] presents results for the state variables and is an extended version
of Table [1

We compare the DICE model (under power utility) with two versions of
the SICE model: power utility and Pareto utility. Over periods 0-15 both
the control and state variables related to the economy part (C, I, and K)
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of the SICE model under power utility closely follow the DICE model. In
particular, C'/Y, I/Y and K/Y under SICE with power utility deviate from
DICE by no more that 0.6% over the 16 periods that we consider. The main
differences between DICE and SICE are related to the climate modules. The
deviation between the control and state variables pertaining to the climate
part of SICE (u, M, and H) and the climate part of DICE is somewhat more
pronounced, but still rather small.

Furthermore, the control and state variables under the SICE model with
Pareto utility closely resemble those of the SICE model under power utility.
This is true for both the economy and climate parts of the SICE model. This,
perhaps, is not surprising because Pareto utility was calibrated to resemble
power utility along the expected trajectory of e;; over the reported period.
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Appendix B: SSICE with normal errors

In Table [2] of Section we presented a comparison between power and
Pareto utility for the control variables consumption, investment and abate-
ment. We complement this table by presenting the corresponding results for
the state variables.

Table 7: SSICE model with normal errors, under power and Pareto utility

power Pareto

t\7o 0.00 0.03 0.06 0.00 0.03 0.06
Capital K;

2010 135.00 135.00  135.00 135.00  135.00  135.00
2035 309.80 304.62  302.03 333.99  336.20 338.55
2060 586.23  574.59  560.89 585.42  575.22  562.93
2085 968.42  967.45  968.20 917.34  921.61  925.49
Concentration M,

2010 818.99  818.99  818.99 818.99 818.99  818.99
2035 958.44  957.35  956.56 961.03  960.72  960.25

2060 1125.06 1123.59 1122.48 1134.26 1134.11 1133.85
2085 1293.97 1293.32 1292.71 1311.26 1311.60 1311.55

Temperature H;

2010 0.8300  0.8300  0.8300 0.8300  0.8300  0.8300
2035 1.4279  1.4264  1.4252 1.4302  1.4294  1.4284
2060 21219  2.1187  2.1165 2.1359  2.1357  2.1351
2085 2.8467  2.8423  2.8384 28790  2.8780  2.8762

The three panels in Table [7] present the results for capital, concentration,
and temperature, respectively.
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