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1 Introduction

In their important seminal work, Pratt [33] and Arrow [3, 4] (henceforth, PA) show that under

expected utility (EU) the risk premium π associated to a small risk ε̃ with zero mean can be

approximated by the following expression:

π ' m2

2

(
−U

′′(w0)

U ′(w0)

)
. (1.1)

Here, m2 is the second moment about the mean (i.e., the variance) of ε̃ while U ′(w0) and U ′′(w0)

are the first and second derivatives of the utility function of wealth U at the initial wealth level

w0.1 In the PA-approach, the designation “small” refers to a risk that has a probability mass

equal to unity but a small variance. The PA-approximation in (1.1) provides a very insightful

dissection of the EU risk premium, disentangling the complex interplay between the probability

distribution of the risk, the decision-maker’s risk attitude, and his initial wealth. This well-

known result has led to many developments and applications within the EU model in many

fields; see e.g., Aı̈t-Sahalia and Lo [2], Cohen [14], Eeckhoudt, Gollier and Schlesinger [17] and

the references therein.

The aim of this paper is to show that a similar result can also be obtained outside EU, in

the dual theory of choice under risk (DT; Yaari [48]) and, more generally and behaviorally more

relevant, under rank-dependent utility (RDU; Quiggin [36]). The RDU model encompasses both

EU and DT as special cases and is at the basis of (cumulative) prospect theory (Tversky and

Kahneman [44]).2 To achieve this, we substitute or complement the primal second moment m2

by its dual counterpart, and substitute or complement the derivatives of the utility function U

by the respective derivatives of the probability weighting function.3 This modification enables

us to develop for these two canonical non-EU models a simple and intuitive local index of risk

attitude that resembles the one in (1.1) under EU. Our results allow for quite arbitrary utility

and probability weighting functions including inverse s-shaped functions such as the probability

1For ease of exposition, we assume U to be twice continuously differentiable, with positive first derivative.
2According to experimental evidence collected by Harrison and Swarthout [25], RDU seems to emerge even

as the most important non-EU preference model from a descriptive perspective.
3Dual moments are sometimes referred to as mean order statistics in the statistics literature; see Section 2

for further details.
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weighting functions in Prelec [35] and Wu and Gonzalez [45], which are descriptively relevant

(Abdellaoui [1]). Thus, we allow for violations of e.g., strong risk aversion (Chew, Karni and

Safra [13] and Roëll [37]) in the sense of aversion to mean-preserving spreads à la Rothschild

and Stiglitz [39] (see also Machina and Pratt [28]).

In a very stimulating strand of research, Chew, Karni and Safra [13] and Roëll [37] have

developed the “global” counterparts of the results presented here; see also the more recent

Chateauneuf, Cohen and Meilijson [10, 11] and Ryan [40]. Surprisingly, the “local” approach

has received no attention under DT and RDU, except—to the best of our knowledge—for a

relatively little used paper by Yaari [47]. Specifically, Yaari exploits a uniformly ordered local

quotient of derivatives (his Definition 4) with the aim to establish global results, restricting

attention to DT. Yaari does not analyze the local behavior of the risk premium nor does he

make a reference to dual moments, which are instrumental to our results. For global measures

of risk aversion under prospect theory, we refer to Schmidt and Zank [41].

The insightful Nau [32] proposes a significant generalization of the PA-measure of local risk

aversion in another direction. He considers the case in which probabilities may be subjective,

utilities may be state-dependent, and probabilities and utilities may be inseparable, by invoking

Yaari’s [46] elementary definition of risk aversion as “payoff convex” preferences, which agrees

with the Rothschild and Stiglitz [39] concept of aversion to mean-preserving spreads under EU.

Our paper is organized as follows. In Section 2 we introduce some preliminaries and define

the second dual moment, which we use in Section 3 to develop the local index of absolute

risk aversion under DT. In Section 4 we extend our results to the RDU model. Section 5

discusses related literature in connection to our results and establishes additional results as

well as interpretations and implications of our results. Section 6 generalizes our results to

cover non-binary risks. Section 7 illustrates our results in examples. In Section 8 we present an

application to portfolio choice and we provide a conclusion in Section 9. Some supplementary

material, including the proof of a result in Section 5 and two illustrations to supplement Section

7, suppressed in this version to save space, is contained in an online appendix.
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2 Preliminaries and the Second Dual Moment

Under Yaari’s [48] dual theory (DT), the evaluation of a risk ε̃ with cumulative distribution

function F (x) = P [ε̃ ≤ x] is represented by the preference functional

∫
x dh (F (x)) , (2.1)

where, here and throughout, the integral runs over the support of F and the probability

weighting (distortion) function h : [0, 1]→ [0, 1] is supposed to satisfy the following properties:

h(0) = 0, h(1) = 1, and h′ > 0.4 Rather than distorting “decumulative” probabilities (as in

Yaari [48]), we adopt the convention to distort cumulative probabilities. Our convention ensures

that aversion to mean-preserving spreads corresponds to h′′ < 0 (i.e., strict concavity) under

DT, just like it corresponds to U ′′ < 0 under EU, which facilitates the comparison. Should we

adopt the convention to distort decumulative probabilities, the respective probability weighting

function h̄(p) := 1− h(1− p) would be convex when h is concave.

Furthermore, a rank-dependent utility (RDU) decision-maker (Quiggin [36]) evaluates a

risk ε̃ with cumulative distribution function F by the preference representation

∫
U(x) dh (F (x)) , (2.2)

where we suppose U ′ > 0 and h as above. The RDU decision-maker is averse to mean-preserving

spreads if and only if U ′′ < 0 and h′′ < 0. See the references in the Introduction for global

results on risk aversion under DT and RDU. Clearly, RDU reduces to EU when the probability

weighting function h is the identity and to DT when the utility function U is affine.

The second dual moment about the mean of an arbitrary risk ε̃, denoted by m̄2, is defined

by

m̄2 := E
[
max

(
ε̃(1), ε̃(2)

)]
− E [ε̃] , (2.3)

where ε̃(1) and ε̃(2) are two independent copies of ε̃. The second dual moment can be interpreted

as the expectation of the largest order statistic: it represents the expected best outcome among

4For ease of exposition, we assume h to be twice continuously differentiable.
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two independent draws of the risk. The definition and interpretation of the 2-nd dual moment

readily generalize to the n-th order, n ∈ N>0, by considering n copies.

Our analysis will reveal that for an RDU maximizer who evaluates a small zero-mean risk,

the second dual moment stands on equal footing with the variance as a fundamental measure

of risk. While the variance provides a measure of risk in the “payoff plane”,5 the second dual

moment can be thought of as a measure of risk in the “probability plane”. Indeed, for a risk ε̃

with cumulative distribution function F , so6

m := E [ε̃] =

∫
x dF (x), (2.4)

we have that

m2 =

∫
(x− m)2 dF (x), while m̄2 =

∫
(x− m) d(F (x))2. (2.5)

For the sake of brevity and in view of (2.3), we shall term the second dual moment about

the mean, m̄2, the maxiance by analogy to the variance. Our designation “small” in “small

zero-mean risk” will quite naturally refer to a risk with small maxiance under DT and to a risk

with both small variance and small maxiance under RDU.

One readily verifies that for a zero-mean risk ε̃,

E
[
max

(
ε̃(1), ε̃(2)

)]
= −E

[
min

(
ε̃(1), ε̃(2)

)]
.

The miniance—the expected worst outcome among two independent draws—is perhaps a more

natural measure of “risk”, but agrees with the maxiance for zero-mean risks upon a sign change.

This is easily seen from the Riemann-Stieltjes representations of the miniance and maxiance.

5We refer to Meyer [30] and Eichner and Wagener [21] for insightful comparative statics results on the
mean-variance trade-off and its compatibility with EU.

6Formally, our integrals with respect to functions are Riemann-Stieltjes integrals. If the integrator is a
cumulative distribution function of a discrete (or non-absolutely continuous) risk, or a function thereof, then
the Riemann-Stieltjes integral does not in general admit an equivalent expression in the form of an ordinary
Riemann integral.
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Indeed,

−E
[
min

(
ε̃(1), ε̃(2)

)]
=

∫
x d (1− F (x))2

= −2

∫
x dF (x) +

∫
x d (F (x))2 = E

[
max

(
ε̃(1), ε̃(2)

)]
,

where the last equality follows because
∫
x dF (x) = 0 when ε̃ is a zero-mean risk.

Just like the first and second primal moments occur under EU when the utility function is

linear and quadratic, the first and second dual moments correspond to a linear and quadratic

probability weighting function under DT (cf. (2.1) and (2.4)–(2.5)). For further details on mean

order statistics and their integral representations we refer to David [16]. In the stochastic dom-

inance literature, these expectations of order statistics and their higher-order generalizations

arise naturally in an interesting paper by Muliere and Scarsini [31], when defining a sequence

of progressive n-th degree “inverse” stochastic dominances by analogy to the conventional

stochastic dominance sequence (see Ekern [22] and Fishburn [23]).

In a related strand of the literature, Eeckhoudt and Schlesinger [18] (see also Eeckhoudt,

Schlesinger and Tsetlin [19]) and Eeckhoudt, Laeven and Schlesinger [20] derive simple nested

classes of lottery pairs to sign the n-th derivative of the utility function and probability weight-

ing function, respectively. Their approach can be seen to control the primal moments for EU

and the dual moments for DT. Expressions similar (but not identical) to dual moments also oc-

cur naturally in decision analysis applications. For example, the expected value of information

when the information will provide one of two signals is the maximum of the two posterior ex-

pected values (e.g., payoffs or utilities) minus the highest prior expected value. This generalizes

to the case of n > 2 possible signals. See Smith and Winkler [43] for a related problem.

3 Local Risk Aversion under the Dual Theory

Consider a DT decision-maker. In order to develop the local index of absolute risk aversion

under DT we start from a lottery A given by the following representation (in this and the next
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section our treatment is simple and illustrative; the general results are in Section 6):7,8

Figure 1: Lottery A

p0
−1

1− p
0 1

A

We transform lottery A into a lottery B given by:9

Figure 2: Lottery B

p0
− ε1 −1

2ε1 x
1−

p
0 −

ε
1 1

B

To obtain B from A we subtract a probability ε1 from the probabilities of both states of the

world in A without changing the outcomes and we assign these two probabilities jointly, i.e.,

2ε1, to a new intermediate state to which we attach an outcome x with −1 < x < 1. If x ≡ 0,

then E [A] = E [B] and B is a mean-preserving contraction of A.

The value of x will be chosen such that the decision-maker is indifferent between A and B.

Naturally the difference between 0 and x, denoted by ρ = 0 − x, represents the risk premium

associated to the risk change from A to B. As we will show in Section 5.2 this definition of

the risk premium can be viewed as a natural generalization of the PA risk premium to the

case of risk changes with probability mass less than unity. Depending on the shape of h the

risk premium ρ may be positive or negative. If (and only if) h′′ < 0, the corresponding DT

7In all figures, values along (at the end of) the arrows represent probabilities (outcomes).
8Of course, we assume 0 < p0 < 1.
9We assume 0 < ε1 < min{p0, 1− p0}.
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maximizer is averse to mean-preserving spreads, and would universally prefer B over A when

x were 0. Thus, to establish indifference between A and B for such a decision-maker, x has to

be smaller than 0, in which case ρ is positive.

In general, for x ≡ 0− ρ in B, indifference between A and B under DT implies:

h (p0) (w0 − 1) + (1− h (p0)) (w0 + 1) (3.1)

= h (p0 − ε1) (w0 − 1) + (h (p0 + ε1)− h (p0 − ε1)) (w0 − ρ) + (1− h (p0 + ε1)) (w0 + 1),

where w0 is the decision-maker’s initial wealth level. From (3.1) we obtain the explicit solution

ρ =
(h (p0)− h (p0 − ε1))− (h (p0 + ε1)− h (p0))

(h (p0 + ε1)− h (p0 − ε1))
. (3.2)

By approximating h (p0 ± ε1) in (3.2) using second-order Taylor series expansions around

h(p0), we obtain the following approximation for the DT risk premium:

ρ ' m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
. (3.3)

Here, m̄2 is the unconditional maxiance of the risk ε̃1 that describes the mean-preserving spread

from B with x ≡ 0 to A. Unconditionally, ε̃1 takes the values ±1 each with probability ε1.

Furthermore, Pr is the total unconditional probability mass associated to ε̃1; see Figure 3.

Figure 3: Mean-Preserving Spread from B with x ≡ 0 to A.

p0
− ε1 −1

2ε1 0 + ε̃1
1−

p
0 −

ε
1 1

Observe that lottery A is obtained from lottery B (with x ≡ 0) by attaching the risk ε̃1 to

the intermediate branch of B. That is, the risk ε̃1 is effective conditionally upon realization
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of the intermediate state of lottery B, which occurs with probability 2ε1. One readily verifies

that, for this risk ε̃1, we have that, unconditionally, m̄2 = 2ε2
1 and Pr = 2ε1. We consider

the unconditional maxiance of the zero-mean risk ε̃1 to be “small” and compute the Taylor

expansions up to the order ε2
1. Henceforth, maxiances and variances are always understood to

be unconditional.

It is important to compare our result in (3.3) to that obtained by PA presented in (1.1). In

PA the local approximation of the risk premium is proportional to the variance, while under

DT it is proportional to the maxiance.

We note that the local approximation of the DT risk premium in (3.3) remains valid in

general, for non-binary zero-mean risks ε̃1 with small maxiance, just like, as is well-known,

(1.1) is valid for non-binary zero-mean risks with small variance. See Proposition 6.1 in Section

6.

4 Local Risk Aversion under Rank-Dependent Utility

Under DT the local index arises from a risk change with small maxiance. To deal with the RDU

model, which encompasses both EU and DT as special cases, we naturally have to consider

changes in risk that are small in both variance and maxiance. To achieve this, we start from a

lottery C given by:10

Figure 4: Lottery C

p0
−ε2

1− p
0 ε2

C

Similar to under DT, we transform lottery C into a lottery D by reducing the probabilities of

both states in C by a probability ε1 and assigning the released probability 2ε1 to an intermediate

state with outcome y, where −ε2 < y < ε2. This yields a lottery D given by:

10We assume ε2 > 0.
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Figure 5: Lottery D

p0
− ε1 −ε2

2ε1 y
1−

p
0 −

ε
1

ε2

D

Of course, when y ≡ 0, D is a mean-preserving contraction of C. All RDU decision-makers

that are averse to mean-preserving spreads therefore prefer D over C in that case.

In general, we can search for y such that indifference between C and D occurs. The

discrepancy between the resulting y and 0 is the RDU risk premium associated to the risk

change from C to D and its value, denoted by λ = 0− y, is the solution to

h (p0)U (w0 − ε2) + (1− h (p0))U (w0 + ε2) (4.1)

= h (p0 − ε1)U (w0 − ε2) + (h (p0 + ε1)− h (p0 − ε1))U (w0 − λ)

+ (1− h (p0 + ε1))U (w0 + ε2) .

It will be positive or negative depending on the shapes of U and h.

Approximating the solution to (4.1) by Taylor series expansions, up to the first order in λ

around U (w0) and up to the second orders in ε1 and ε2 around U (w0) and h (p0), we obtain

the following approximation for the RDU risk premium:

λ ' m2

2Pr

(
−U

′′(w0)

U ′(w0)

)
+

m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
. (4.2)

Here, m2 and m̄2 are the unconditional variance and maxiance of the risk ε̃12 that dictates the

mean-preserving spread from D with y ≡ 0 to C. Unconditionally, ε̃12 takes the values ±ε2 each

with probability ε1. Furthermore, Pr is the total unconditional probability mass associated to
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ε̃12.11

Comparing (4.2) to (1.1) and (3.3) reveals that the local approximation of the RDU risk

premium aggregates the (suitably scaled) EU and DT counterparts, with the variance and

maxiance featuring equally prominently.

As shown in Section 6, the local approximation of the RDU risk premium in (4.2) also

generalizes naturally to non-binary risks ε̃12. See Proposition 6.2.

5 Related Literature

5.1 Global Results: Comparative Risk Aversion under RDU

Not only the local properties of the previous sections are valid under DT and RDU but also

the corresponding global properties, just like in the PA-approach under the EU model (see, in

particular, Theorem 1 in Pratt [33]). In this section, we restrict attention to the RDU model.

(The DT model occurs as a special case.) We first note that the definition of the RDU risk

premium in (4.1) applies also when ε1 and ε2 are “large”, as long as 0 < ε1 ≤ {p0, 1− p0} < 1

and ε2 > 0 are satisfied. We then state the following result:

Proposition 5.1 Let Ui, hi, λi(p0, w0, ε1, ε2) be the utility function, the probability weighting

function, and the risk premium solving (4.1), respectively, for RDU decision-maker i = 1, 2.

Then the following conditions are equivalent:

(i) −U ′′2 (w)
U ′2(w)

≥ −U ′′1 (w)
U ′1(w)

and −h′′2 (p)
h′2(p)

≥ −h′′1 (p)
h′1(p)

for all w and all p ∈ (0, 1).

(ii) λ2(p0, w0, ε1, ε2) ≥ λ1(p0, w0, ε1, ε2) for all 0 < ε1 ≤ {p0, 1 − p0} < 1, all w0, and all

ε2 > 0.

Because the binary symmetric zero-mean risk ε̃12 in Section 4 induces a risk change that is a

special case of a mean-preserving spread, the implication (i)⇒(ii) in Proposition 5.1 in principle

follows from the classical results on comparative risk aversion under RDU (Yaari [47], Chew,

11It is straightforward to verify that for ε̃12 we have that, unconditionally, m2 = 2ε1ε
2
2, m̄2 = 2ε21ε2, and

Pr = 2ε1.
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Karni and Safra [13], and Roëll [37]). The reverse implication (ii)⇒(i) formalizes the connection

between our local risk aversion approach and global risk aversion under RDU.

Due to the simultaneous involvement of both the utility function and the probability weight-

ing function, the proof of the equivalences between (i) and (ii) under RDU is more complicated

than that of the analogous properties under EU (and DT). Our proof of Proposition 5.1 (which

is contained in online supplementary material) is based on the total differential of the RDU

evaluation, and the sensitivity of the risk premium with respect to changes in payoffs.

5.2 Relation to the Pratt-Arrow Definition of the Risk Premium

Our definition of the risk premium under RDU in (4.1) can be viewed as a natural generalization

of the risk premium of Pratt [33] and Arrow [3, 4]. To see this, first note that the PA-

definition, under which a risk is compared to a sure loss equal to the risk premium, occurs

when p0 = ε1 = 1
2 .12 Then, lottery D becomes a sure loss of λ the value of which is such that

the decision-maker is indifferent to the risk of lottery C.

When ε1 <
1
2 , our definition of the RDU risk premium provides a natural generalization

of the PA-definition. This becomes readily apparent if we omit the common components of

lotteries D and C with the same incremental RDU evaluation and isolate the risk change, which

yields

Figure 6: Lottery D after Omitting the Components in Common with Lottery C.

2ε1 −λD \ C ∩D

and

12Recall that the probability ε1 and payoff ±ε2 in (4.1) can be “large” as long as 0 < ε1 ≤ {p0, 1 − p0} < 1
and ε2 > 0.
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Figure 7: Lottery C after Omitting the Components in Common with Lottery D.

ε1
−ε2

ε
1

ε2

C \ C ∩D

The value of λ thus represents the risk premium for the risk change induced by a risk that,

unconditionally, takes the values ±ε2 each with probability ε1.

When ε1 <
1
2 , the original comparison between C and D is a comparison between two risky

situations as in Ross [38], Machina and Neilson [27], and Pratt [34]. The removal of common

components, however, reveals that we essentially face a PA-comparison between a single loss

and a risk with the same total probability mass, which is now allowed to be smaller than unity.

5.3 First and Second Order Risk Aversion

In an insightful paper, Segal and Spivak [42] introduce the concepts of first and second order

risk aversion. They analyze the limiting behavior of the risk premium of Pratt [33] and Arrow

[3, 4] when the payoff (i.e., size) of the risk tends to zero. Clearly, this risk premium equals

zero when the payoff of the risk is identical zero, i.e., when the risk is degenerate at zero. Now

if, for small payoff, the risk premium is proportional to the payoff (or, more generally, not of

smaller order than the payoff), then risk attitude is said to be of order 1. If the risk premium

is proportional to the square of the payoff (or, more generally, of smaller order than the payoff

but not than the square of the payoff), then risk attitude is of order 2.

Let us now consider our generalization of the PA-definition of the risk premium based upon

the comparison between the lotteries C and D of Section 4. In particular, we wish to analyze

the behavior of the RDU risk premium for the risk tε̃12 when t ↓ 0, where the zero-mean risk

ε̃12 represents the mean-preserving spread from lottery D with y ≡ 0 to lottery C. From our

results in Section 4 it follows that for the RDU risk premium λ associated to tε̃12, as a function

13



of t,

λ(t) ' t2 m2

2Pr

(
−U

′′(w0)

U ′(w0)

)
+ t

m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
. (5.3)

Note that λ(0) ≡ 0 and that

∂λ

∂t

∣∣∣
t=0+

6= 0,

provided that h′′(p0) 6= 0. Eqn. (5.3) nicely makes apparent the well-known fact that risk

aversion is a first-order phenomenon under RDU and DT, but a second-order phenomenon

under EU. Indeed, limt→0+
λ(t)
t 6= 0, i.e., λ(t) is not o(t), unless, of course, h′′(p0) = 0.13 We

summarize the result above in the following proposition:

Proposition 5.2 Let the decision-maker be an RDU maximizer. Then his attitude towards

risk is of order 1 at the points where h′′(p) 6= 0.

A related result appears in Proposition 4 of Segal and Spivak [42] when analyzing the risk

premium of Pratt and Arrow, of which our definition of the risk premium is a generalization

(see Section 5.2). Contrary to Segal and Spivak [42], our analysis is not restricted to either

globally strictly concave or globally strictly convex probability weighting functions, owing to

the local nature of our approximations. That is, our analysis also applies to e.g., inverse s-

shaped probability weighting functions, which are descriptively relevant. Thus, Proposition 5.2

reconfirms, but also generalizes, the corresponding result in Segal and Spivak [42].

The fact that attitude towards risk is a first-order phenomenon under RDU has impor-

tant implications for optimal portfolio choice and insurance coverage. For instance, an RDU

decision-maker may prefer to hold a fully risk-less investment portfolio even when the equity

premium is positive, or buy full insurance coverage even when the insurance premium loading

is positive, contrary to an EU maximizer for whom risk aversion is a second-order phenomenon;

see Segal and Spivak [42], Eeckhoudt, Gollier and Schlesinger [17], S. 13.2, and Section 8 below.

13In the latter case, λ(t) is o(t) but not o(t2), provided U ′′(w0) 6= 0.
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5.4 Related Measures of Risk

Dual moments can be related to the Gini coefficient named after statistician Corrado Gini

and used by economists to measure the dispersion of the income distribution of a population,

summarizing its income inequality. In risk theory, the Gini coefficient G of a risk ε̃ is usually

defined by

G =
E
[
|ε̃(1) − ε̃(2)|

]
2E [ε̃]

, (5.4)

which represents half the relative (i.e., normalized) expected absolute difference between two

independent draws of the risk ε̃. One can verify that, equivalently but less well-known,

G =
m̄2

m
. (5.5)

This alternative expression features the ratio of the maxiance and the first moment. Thus,

m̄2 = Gm.

To measure income inequality among a population, one interprets P [ε̃ > x] as the fraction

of a population with income exceeding x. It is well-known that the Gini coefficient G decreases

when income from the rich part of the population is transferred to the poor part, more precisely,

when the distribution of ε̃ undergoes a mean-preserving contraction. Clearly, the same is true

for the second dual moment m̄2. Then income inequality reduces, according to these measures.

When the mean is kept constant, second order stochastic dominance, as implied by a mean-

preserving contraction, is equivalent to Lorenz ordering (e.g., Atkinson [5], Ben-Porath and

Gilboa [7], Yitzhaki [49]). As income distributions are often not ordered by (the partial) Lorenz

ordering, but have intersecting Lorenz curves, many papers have analyzed ordering refinements

(see e.g., Muliere and Scarsini [31], Davies and Hoy [15], Chateauneuf, Gajdos and Wilthien [9]

and the references therein). This literature shows in particular that Gini coefficients of income

distributions with the same mean preserve not only second order stochastic dominance, but

also second and third order inverse stochastic dominance, and, from (5.5), so does the second

dual moment m̄2. Thus, if two risks with the same mean are ordered in second or third order
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inverse stochastic dominance, then the corresponding contributions

m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
=
Gm
2Pr

(
−h
′′(p0)

h′(p0)

)
,

to our RDU risk premium approximation in (4.2) will also be ordered. In recent work, Eeck-

houdt, Laeven and Schlesinger [20] provide simple characterizations of third (and higher) order

inverse stochastic dominance.

Finally, in the context of investment portfolio evaluation, n-th degree expectations of first

order statistics also appear in Cherny and Madan [12] as measures of performance. In this

setting, the expected maximal financial loss occurring in n independent draws of a risk is used

as a measure to define an acceptability index linked to a tolerance level of stress.

5.5 Measuring Risk Aversion

Since Pratt [33] and Arrow [3, 4] the dominant measure of risk aversion under EU is given by

the local index −U ′′(w0)
U ′(w0) . As shown by Pratt [33], Theorem 1, this measure of absolute risk

aversion is equivalent to other reasonable measures of risk aversion. Moreover, it is invariant

to positive affine transformations of the utility function, and, in fact, contains all information

relevant to the cardinal scale given by the utility function. For empirical and experimental

measurements of risk aversion within EU, most often using parametric assumptions, we refer

to, for example, Binswanger [8] and Holt and Laury [26] and the references therein.

As explained e.g., by Eeckhoudt, Gollier and Schlesinger [17], Ch. 1, the PA-approximation

to the EU risk premium in (1.1) can be exploited to directly obtain a non-parametric measure-

ment of the local index of risk aversion from simple experiments. Indeed, considering a binary

zero-mean risk, assumed to be small-sized hence with small variance, generating a given gain

and loss with equal probability, one may ask the question of what (share of) wealth one would

be willing to pay to get rid of this zero-mean risk. The answer to this question, upon division

by half the variance of the risk, yields an estimate of the local index of absolute (or relative, if

the share of wealth is considered) risk aversion in EU.

This paper shows how the local index of risk aversion and the PA-approximation to the risk
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premium can be generalized outside EU, to DT and RDU. The new approximations we develop

can be used to directly obtain non-parametric estimates of the corresponding local indexes of

risk aversion from simple experiments, just like under EU. In particular, under DT, the new

approximation in Eqn. (3.3) can be exploited to directly obtain a non-parametric estimate of

−h′′(p0)
h′(p0) , with the role of the variance of the risk now replaced by the maxiance. That is, one

may ask the question of what reduction in wealth in the intermediate state of lottery B makes

the decision-maker indifferent between lotteries A and B, where the maxiance of the zero-mean

risk ε̃1 describing the mean-preserving spread from B with x ≡ 0 to A is assumed to be small.

The answer to this question, upon division by half the maxiance of the risk times the total

unconditional probability mass, yields an estimate of the local index of absolute risk aversion

under DT.

Similarly, under RDU, by considering now risks with small variance and equally small

maxiance, one may directly obtain a non-parametric estimate of the RDU local index of absolute

risk aversion given by −
(
U ′′(w0)
U ′(w0) + h′′(p0)

h′(p0)

)
from Eqn. (4.2). Thus, our results indicate how

experimentalists may obtain meaningful estimates of the local indexes of risk aversion in the

DT and RDU models, by controlling the maxiance and both the variance and the maxiance,

respectively.

6 Generalization to Non-Binary Risks

In this section, we first show that the local approximation for the DT risk premium in (3.3)

remains valid for non-binary risks with small maxiance. Next, we prove that the RDU risk

premium approximation in (4.2) also remains valid for non-binary risks with small variance

and small maxiance. Throughout this section, we consider n-state risks with probabilities pi

associated to outcomes xi, i = 1, . . . , n, with n ∈ N>0. We order states from the lowest outcome

state (designated by state number 1) to the highest outcome state (designated by state number

n), which means that x1 ≤ · · · ≤ xn.

We analyze the DT risk premium for a risk with n ≥ 2 effective states that have equal

unconditional probability of occurrence given by 2ε1
n , 0 < ε1 ≤ 1

2 . The outcomes are, however,
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allowed to be the same among adjacent states; this would correspond to a risk with non-equal

state probabilities. Note the generality provided by this construction. We suppose that the

risk has mean equal to zero, so
∑n

i=1 xi = 0. One may verify that the unconditional maxiance

of this n-state risk is given by

m̄2 =
4ε2

1

n2

n∑
i=1

(2i− 1)xi, (6.1)

and that the total probability mass Pr = 2ε1. Observe that the maxiance is of the order ε2
1,

i.e., m̄2 = O
(
ε2

1

)
.

Similar to Section 3, this zero-mean risk is attached to the intermediate branch of lottery

B (with x ≡ 0) to induce a mean-preserving spread. (We normalize the outcomes of the zero-

mean risk by restricting them to the interval [−1, 1]. This ensures that the initial ordering of

outcomes in lottery B is not affected and can easily be generalized.) The DT risk premium ρ

then occurs as the solution to

(h (p0 + ε1)− h (p0 − ε1)) (w0 − ρ)

=
n∑
i=1

(
h

(
p0 − ε1 + i

2ε1

n

)
− h

(
p0 − ε1 + (i− 1)

2ε1

n

))
(w0 + xi) . (6.2)

From (6.2) we obtain the explicit solution

ρ = −
n∑
i=1

(
h
(
p0 − ε1 + i2ε1

n

)
− h

(
p0 − ε1 + (i− 1) 2ε1

n

))
h (p0 + ε1)− h (p0 − ε1)

xi. (6.3)

Then we state the following proposition:

Proposition 6.1 The generalization of the local approximation for the DT risk premium in

(3.3) to non-binary risks is given by

ρ ' −
n∑
i=1

1
2 (2i− 1)

4ε21
n2 h

′′ (p0)

2ε1h′ (p0)
xi

=
m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
.

Proof. From (6.3), by invoking Taylor series expansions around h (p0) up to the second order in
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ε1, the approximation follows upon rearranging terms and using
∑n

i=1 xi = 0. The last equality

is a direct consequence of the expression in (6.1). 2

Next, turning to the risk premium under RDU, we consider, as under DT, an n-state zero-

mean risk with unconditional state probabilities 2ε1
n , so

∑n
i=1 xi = 0 and Pr = 2ε1, now assumed

to satisfy additionally that m2 = 2ε1
n

∑n
i=1 x

2
i = O

(
ε2

2

)
for some ε2 > 0. Upon attaching this

zero-mean risk to the intermediate branch of lottery D (with y ≡ 0 and assuming without

losing generality that |xi| < ε2), the RDU risk premium λ occurs as the solution to

(h (p0 + ε1)− h (p0 − ε1))U (w0 − λ)

=

n∑
i=1

(
h

(
p0 − ε1 + i

2ε1

n

)
− h

(
p0 − ε1 + (i− 1)

2ε1

n

))
U (w0 + xi) . (6.4)

Then we state the following proposition:

Proposition 6.2 The generalization of the local approximation for the RDU risk premium in

(4.2) to non-binary risks is given by

λ ' −
n∑
i=1

1
2

2ε1
n U

′′ (w0)

2ε1U ′ (w0)
x2
i −

n∑
i=1

1
2 (2i− 1)

4ε21
n2 h

′′ (p0)

2ε1h′ (p0)
xi

=
m2

2Pr

(
−U

′′(w0)

U ′(w0)

)
+

m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
.

Proof. From (6.4), by invoking Taylor series expansions up to the first order in λ around U (w0)

and up to the second order in xi and ε1 around U (w0) and h (p0), upon rearranging terms and

using
∑n

i=1 xi = 0, we obtain, at the leading orders, the stated approximation for the RDU risk

premium. The last equality is a direct consequence of the expression in (6.1) and its primal

counterpart m2 = 2ε1
n

∑n
i=1 x

2
i . 2

7 Examples

Owing to its local nature, our approximation is valid and can insightfully be applied when the

probability weighting function is not globally concave, as is suggested by ample experimental
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evidence. Consider the canonical probability weighting function of Prelec [35] given by14

h(p) = 1− exp {− (− log (1− p))α} , 0 < α < 1. (7.1)

It captures the following properties which are observed empirically: it is regressive (first,

h(p) > p, next h(p) < p), is inverse s-shaped (first concave, next convex), and is asymmetric

(intersecting the identity probability weighting function h(p) = p at p∗ = 1 − 1/ exp(1), the

inflection point).15 The upper panel of Figure 8 plots this probability weighting function for

α ∈ {0.1, 0.3, . . . , 0.9}. (Wu and Gonzalez [45] report estimated values of α between 0.03 and

0.95.)

Its local index −h′′(p)
h′(p) takes the form

− h′′(p)

h′(p)
= −1− α (1− (− log(1− p))α) + log(1− p)

(1− p) log(1− p) . (7.2)

Figure 8, lower panel, plots this local index for α ∈ {0.1, 0.3, . . . , 0.9}. All examples in this

section refer to one-parameter probability weighting functions, but multi-parameter probability

weighting functions may just as well be considered.

The inverse s-shape of the probability weighting function (first concave, next convex) im-

plies that its local index changes sign at the inflection point. More specifically, the local index

associated with Prelec’s probability weighting function is decreasing (first positive, next neg-

ative) in p for any 0 < α < 1. This property is naturally consistent with the inverse s-shape

property of the probability weighting function: the inverse s-shape property is meant to repre-

sent a psychological phenomenon known as diminishing sensitivity in the probability domain

(rather than the payoff domain), under which the decision-maker is less sensitive to changes

in the objective probabilities when they move away from the reference points 0 and 1, and

becomes more sensitive when the objective probabilities move towards these reference points.

14Recall our convention to distort cumulative probabilities rather than decumulative probabilities. Prelec’s
original function is given by w(p) = 1− h(1− p).

15Prelec’s function is characterized axiomatically as the probability weighting function of a sign- and rank-
dependent preference representation that exhibits subproportionality, diagonal concavity, and so-called compound
invariance.
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Figure 8: Prelec’s Probability Weighting Function (upper panel) and its Local Index (lower
panel). We consider α ∈ {0.1, 0.3, . . . , 0.9}.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.1

0.3

0.5

0.7

0.9

0.2 0.4 0.6 0.8 1.0

-20

-10

10

20

0.1

0.3

0.5

0.7

0.9

A decreasing local index implies in particular that h′′′ > 0. (By Pratt [33], the sign of the

derivative of the local index is the same as the sign of (h′′(p))2−h′(p)h′′′(p).) Inverse s-shaped

probability weighting functions, including Prelec’s canonical example, usually exhibit positive

signs for the odd derivatives and alternating signs (first negative, then positive) for the even

derivatives. For a probability weighting function that is inverse s-shaped (first concave, then

convex) and has second derivative equal to zero at the inflection point, a positive sign of the

third derivative means that the function becomes increasingly concave when we move to the

left of the inflection point and becomes increasingly convex when we move to the right of the

inflection point.

In Figure B.1 in the online appendix we also plot the local index −h′′(p)
h′(p) of the probability

weighting function proposed by Tversky and Kahneman [44] (see also Wu and Gonzalez [45])

21



given by

h(p) = 1− (1− p)β(
(1− p)β + pβ

)1/β
, 0 < β < 1, (7.3)

for values of the parameter β ∈ {0.55, 0.65, . . . , 0.95} as found in experiments (Wu and Gonzalez

[45] report estimated values of β between 0.57 and 0.94). Observe the similarity between the

shapes in Figure 8 and Figure B.1.

The analysis in this paper reveals that for a small risk the sign and size of the maxiance’s

contribution to the RDU risk premium, given by the second term on the right-hand side of

(4.2), i.e.,

m̄2

2Pr

(
−h
′′(p0)

h′(p0)

)
,

varies with the probability level p0, from strongly positive to strongly negative, in tandem with

the local index −h′′(p)
h′(p) to which it is proportional.

We finally plot in Figure 9 our approximation to the RDU risk premium (4.2) of a risk with

small variance and maxiance normalized to satisfy m2
2Pr = m̄2

2Pr = 1, as a function of both the

initial wealth level w0 and the probability level p0. We suppose the utility function is given by

the conventional power utility (note that we consider a pure rank-dependent model)

U(x) = xγ , (7.4)

with γ = 0.5 (consistent with the gain domain in Tversky and Kahneman [44] and with

experimental evidence in Wu and Gonzalez [45]), and the probability weighting function is

that of Prelec with parameter α = 0.65.

Figure 9 illustrates the interplay between the variance’s and the maxiance’s contributions to

the RDU risk premium (4.2), depending on the local indices
(
−U ′′(w)
U ′(w)

)
and

(
−h′′(p)
h′(p)

)
evaluated

in the wealth and probability levels w0 and p0, respectively. The light-orange surface represents

our approximation (4.2) to the RDU risk premium λ, while the dark-blue surface is the λ = 0-

plane. To illustrate the effect of a change in variance or maxiance, we also plot in Figure B.2

in the online appendix the surface of the RDU risk premium approximation (4.2) for a small

risk with ratio between the variance and maxiance equal to 3 (upper panel) and 1/3 (lower)
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Figure 9: Surface of the RDU Risk Premium Approximation. We consider a risk with small
variance and maxiance normalized to satisfy m2

2Pr = m̄2
2Pr = 1 under power utility (with γ = 0.5)

and Prelec’s probability weighting function (with α = 0.65).

panel, instead of a ratio of 1 as in Figure 9.

8 A Portfolio Application

In order to illustrate how the concepts we have developed can be used we consider a simple

portfolio problem with a safe asset, the return of which is zero, and a binary risky asset with

returns expressed by the following representation:16

Figure 10: Return Distribution of the Risky Asset

p0
−R0

1− p
0 R1

Taking R1
R0+R1

> p0 makes the expected return strictly positive.

16We assume 0 < R0 < R1.
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If an RDU investor has initial wealth w0 his portfolio optimization problem is given by

arg maxα {h (p0)U (w0 − αR0) + (1− h (p0))U (w0 + αR1)} , (8.1)

with first-order condition (FOC) given by

−R0h (p0)U ′ (w0 − αR0) +R1 (1− h (p0))U ′ (w0 + αR1) ≡ 0.

It is straightforward to show that the second-order condition for a maximum is satisfied pro-

vided U ′′ < 0.

Let us now pay attention to the RDU investor for whom it is optimal to choose not to invest

in the risky asset, i.e., to select α ≡ 0. Plugging α ≡ 0 into the FOC we obtain the condition

h (p0) ≡ R1

R0 +R1
. (8.2)

Without surprise, h (p0) > p0. This value of h (p0) expresses the intensity of risk aversion that

induces the choice of α ≡ 0.

Now consider a mean-preserving contraction of the return of the risky asset given by:

Figure 11: Mean-Preserving Contraction of the Risky Asset

p0
− ε1 −R0

2ε1 (R1−R0)
2

p
0 −

ε
1 R1

One may verify that such a mean-preserving contraction for a decision-maker who had decided

not to participate in the risky asset may induce him to select a strictly positive α.

Hence, we raise the following question: By how much should we reduce the intermediate

return R1−R0
2 to induce the decision-maker to stick to the optimal α equal to zero? The answer
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to this question is denoted by ς.

Because we are concentrating on the situation where α ≡ 0 is optimal, the analysis is

related only to the shape of the probability weighting function. Indeed, the shape of U that

appears in the FOC through different values of U ′ becomes irrelevant at α ≡ 0. The reason

to concentrate on α ≡ 0 where only the probability weighting function matters under RDU

pertains to the well-known fact that under EU a mean-preserving contraction of the risky

return has an ambiguous effect on the optimal α (Gollier [24]).

It turns out that, upon invoking Taylor series expansions and after several basic manipula-

tions, the reduction ς that answers our question raised above is given by

ς ' m̄2

2Pr

(
−h
′′ (p0)

h′ (p0)

)
, (8.3)

where m̄2 is the maxiance of the risk that, unconditionally, takes the values ±R0+R1
2 each with

probability ε1, and where Pr is the total probability mass of this risk. Again the second dual

moment (instead of the primal one) appears, jointly with the intensity of risk aversion induced

by the probability weighting function. In particular, the mean-preserving contraction is an

improvement and has made the risky asset attractive if and only of ς is positive.

9 Conclusion

Under EU, the risk premium is approximated by an expression that multiplies half the variance

of the risk (i.e., its second primal central moment) by the local index of absolute risk aversion.

This expression dissects the complex interplay between the risk’s probability distribution, the

decision-maker’s preferences, and his initial wealth that the risk premium in general depends

on. Surprisingly, a similar expression almost never appears in non-EU models.

In this paper, we have shown that when one refers to the second dual moment—instead

of, or on par with, its primal counterpart—one obtains quite naturally an approximation to

the risk premium in canonical non-EU models that mimics the well-known result within EU.

In particular, this yields local indexes of absolute risk aversion and approximations to the risk
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premia in the non-EU models given by the dual theory and the popular rank-dependent utility

model.

The second dual moment, or “maxiance”, plays an instrumental role in this development.

Indeed, we show that the maxiance stands on equal footing with the variance as a fundamental

measure of risk, for a rank-dependent utility maximizer who evaluates a small zero-mean risk.

The links between primal and dual second moments, i.e., variance and maxiance, on the one

hand and the local indexes of absolute risk aversion on the other hand that we uncover, are

intimately connected to the three canonical decision models—rank-dependent utility and its two

special cases given by expected utility and the dual theory—that we consider. A generalization

of our results to cover alternative non-EU models, such as reference-dependent models (see e.g.,

the interesting recent work of Baillon, Bleichrodt and Spinu [6] and Masatlioglu and Raymond

[29]), will require other concepts instead of, or in addition to, primal and dual moments and

constitutes a promising future research avenue.

The PA-approximation of the risk premium under EU has induced thousands of applications

and results in many fields such as operations research, insurance, finance, and environmental

economics. So far, comparable developments have been witnessed to a much lesser extent

outside the EU model. Hopefully, the new and simple expressions of the approximated risk

premia we find may contribute to a widespread analysis and use of risk premia for non-EU.
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