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1. Introduction

In the context of risk pricing and capital requirements, modern static
theories of financial risk measurement are provided by monetary, convex and
entropy convex measures of risk (Föllmer and Schied (26; 27), Frittelli and
Rosazza Gianin (29), Ruszczyński and Shapiro (48), and Laeven and Stadje
(38)).

Over the past two decades not only the study of static but also of dynamic
theories of risk measurement has developed into a flourishing and mathem-
atically refined area of research. The dynamic counterparts of the static
theories of monetary measures of risk have been developed in Artzner et al.
(2), Riedel (45), Frittelli and Rosazza Gianin (30), Detlefsen and Scandolo
(22), Cheridito, Delbaen and Kupper (12), Delbaen (19), Föllmer and Penner
(25), Klöppel and Schweizer (35), Cheridito and Kupper (15), among many
others. We refer to Föllmer and Schied (27), Chapter 11, for an overview
and many references.

A main problem in dynamic risk measurement is the consistency over
time of the evaluation as well as of the resulting decisions. The notion of
recursiveness, or Bellman’s dynamic programming principle, has played a
central role in the early development of the literature on the theory and
application of dynamic measurement of risk; see e.g., Duffie and Epstein
(23), Chen and Epstein (11), Epstein and Schneider (24) and Ruszczyński and
Shapiro (49). Recursiveness is intimately related to (strong) time-consistency
(even equivalent, under linear utility).

A large literature analyzes and characterizes time-consistency for the
canonical theories of risk measurement. There are several approaches to
characterizing/generating time-consistency properties in the literature, in-
cluding the following: approaches based on mixture representations and law
invariance (Weber (52), Kupper and Schachermayer (37), Delbaen, Bellini,
Bignozzi and Ziegel (21)); based on dual representations, requiringm-stability
(or rectangularity) of the set of generalized scenarios, or imposing the cocycle
property on the penalty function (Delbaen (19), Föllmer and Penner (25),
Bion-Nadal (6; 7)); based on a decomposition property of acceptance sets
(Bion-Nadal (6; 7), Cheridito, Delbaen and Kupper (12)); and based on
a recursive construction via generators (Cheridito and Kupper (16)). In
continuous-time, in a Brownian or Brownian-Poissonian filtration, another
approach consists of characterizing time-consistency via a representation of
the penalty function; see Delbaen, Peng and Rosazza Gianin (20), Tang and
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Wei (50), Laeven and Stadje (39), and see Krätschmer et al. (36) and its
references for corresponding applications in OR.

Recently, Bellini, Laeven and Rosazza Gianin (5) introduced robust return
risk measures, mainly for two purposes. First, to reveal and formalize the dif-
ference between risk measurement in terms of monetary values and in terms
of returns. Second, to take into account in this setting ambiguity with re-
spect to the probabilistic model P , by means of ambiguity averse preferences,
specifically invoking multiple priors (Gilboa and Schmeidler (32)), variational
preferences (Maccheroni, Marinacci and Rustichini (41)), or homothetic pref-
erences (Chateauneuf and Faro (10), Cerreia-Vioglio, Maccheroni, Marinacci
and Montrucchio (9) and Laeven and Stadje (38)).

In particular, in Bellini, Laeven and Rosazza Gianin (5) we provided
an axiomatic foundation of a canonical subclass of return risk measures,
that of Orlicz premia, by exploiting a one-to-one correspondence between
Orlicz premia and measures of (utility-based) shortfall risk. Furthermore, we
defined, axiomatized and studied robustified versions of Orlicz premia and
of their optimized translation-invariant extensions (Rockafellar and Uryasev
(46) and Rockafellar, Uryasev and Zabarankin (47)), known as Haezendonck-
Goovaerts risk measures ; see Haezendonck and Goovaerts (34), Delbaen (18),
Goovaerts, Kaas, Dhaene and Tang (33) and Bellini and Rosazza Gianin (3;
4) for the classical (non-robust) definitions. We explicated that Orlicz premia
can be interpreted to assess the stochastic nature of returns—they are return
risk measures—, in contrast to the common use of monetary risk measures
to assess the stochastic nature of a position’s monetary value. The class
of return risk measures encompasses interesting subclasses of risk measures,
such as p-norms, that are not included in the class of monetary measures of
risk.

In this paper we extend to a dynamic setting the static robust return
risk measures introduced in Bellini, Laeven and Rosazza Gianin (5). We
extensively analyze the properties of the resulting dynamic robust return risk
measures. Furthermore, we provide characterization results of their time-
consistency. We show in particular that the only time-consistent dynamic
Orlicz premia are conditional p-norms. We also show that time-consistency of
dynamic robust Orlicz premia and of the associated Haezendonck-Goovaerts
risk measures are intimately related.

The remainder of this paper is organized as follows: In Section 2 we
introduce our notation and setting and recall some preliminaries. In Section 3
we introduce dynamic Orlicz premia and analyze their properties. In Section
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4 we consider their robust extension. In Section 5 we introduce dynamic
robust Haezendonck-Goovaerts risk measures. In Section 6 we analyze time-
consistency properties.

2. Preliminaries and basic definitions

Throughout the paper, we work on a nonatomic probability space (Ω,F , P ).
All equalities and inequalities between random variables are meant to hold
P -a.s. without further specification. We denote by L∞(P ), L∞+ (F , P ), and
L∞++(P ) the sets of P -a.s. bounded, P -a.s. bounded non-negative, and P -
a.s. bounded strictly positive random variables, respectively. We assume that
positive realizations of random variables represent losses. A risk measure
ρ : L∞(P )→ R is said to be:

- monotone, if X ≤ Y ⇒ ρ(X) ≤ ρ(Y )

- strictly monotone, if X ≤ Y and P (X < Y ) > 0⇒ ρ(X) < ρ(Y )

- translation invariant, if ρ(X + h) = ρ(X) + h, ∀h ∈ R,∀X ∈ L∞

- monetary, if it is monotone, translation invariant and satisfies ρ(0) = 0

- convex, if ρ(αX+(1−α)Y ) ≤ αρ(X)+(1−α)ρ(Y ), ∀α ∈ [0, 1],∀X, Y ∈
L∞

- positively homogeneous, if ρ(λX) = λρ(X), ∀λ ≥ 0,∀X ∈ L∞

- subadditive, if ρ(X + Y ) ≤ ρ(X) + ρ(Y ),∀X, Y ∈ L∞

- coherent, if it is monotone, translation invariant, positively homogen-
eous and subadditive

- law-invariant, if X
d
= Y ⇒ ρ(X) = ρ(Y ).

A risk measure ρ has the Fatou property if

Xn
P→ X, ‖Xn‖∞ ≤ k ⇒ ρ(X) ≤ lim inf

n→+∞
ρ(Xn),

while it has the stronger Lebesgue property if

Xn
P→ X, ‖Xn‖∞ ≤ k ⇒ ρ(X) = lim

n→+∞
ρ(Xn).

4



With our sign conventions, for monotone and convex risk measures the Le-
besgue property is equivalent to continuity from above, i.e.,

Xn ↓ X ⇒ ρ(Xn)→ ρ(X),

while the Fatou property is equivalent to continuity from below, that is,

Xn ↑ X ⇒ ρ(Xn)→ ρ(X).

See Delbaen (18) and Föllmer and Schied (27).
We let Φ: [0,+∞) → [0,+∞) be strictly increasing and convex, with

Φ(0) = 0, Φ(1) = 1, and Φ(+∞) = +∞. Such a Φ is referred to as a Young
function.

Definition 1. Let Φ be a Young function. For a random loss X ∈ L∞+ (Ω,F , P ),
the Orlicz premium is defined by

HΦ(X) := inf

{
k > 0

∣∣∣ E [Φ(X
k

)]
≤ 1

}
.

One easily verifies that Orlicz premia are strictly monotone, positively ho-
mogeneous, subadditive, law invariant, have the Lebesgue property, and sat-
isfy HΦ(c) = c, for every c ≥ 0. For Φ(x) = xp, with p ≥ 1, clearly
HΦ(X) = ‖X‖p. Orlicz premia are law-invariant norms and their natural
domain is the nonnegative cone of an Orlicz space

LΦ
+ :=

{
X ≥ 0

∣∣∣ E [Φ(X
k

)]
< +∞, for some k > 0

}
.

We refer to Rao and Ren (44), Haezendonck and Goovaerts (34), Bellini and
Rosazza Gianin (3; 4) and Cheridito and Li (13; 14) for further properties of
Orlicz premia and Orlicz spaces. Notice that if X ∈ L∞+ , X 6= 0, then

EP
[
Φ

(
X

HΦ(X)

)]
= 1,

and moreover HΦ(X) = 1 ⇐⇒ E[Φ(X)] = 1.
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3. Dynamic Orlicz premia

In this section we extend the definition of Orlicz premia to a dynamic
setting. On the probability space (Ω,F , P ) we fix a filtration (Ft)t∈[0,T ], with
F0 = {∅,Ω} and FT = F . For each t ∈ (0, T ], we assume that (Ω,Ft, P ) is
nonatomic.

Definition 2. Let Φ be a Young function and let t, u ∈ [0, T ] with t ≤ u.
For X ∈ L∞+ (Fu), the dynamic Orlicz premium HΦ

t : L∞+ (Fu)→ L∞+ (Ft) is

HΦ
t (X) := ess inf

{
ht ∈ L∞++(Ft)

∣∣∣ EP [Φ(X
ht

) ∣∣∣∣ Ft] ≤ 1

}
. (1)

Recall that the essential infimum of a family of Ft-measurable functions
{hα}α∈I is the P -a.s. unique Ft-measurable function Z such that Z ≥ hα for
each α ∈ I, and if Z ′ is another Ft-measurable function satisfying Z ′ ≥ hα
for each α ∈ I then Z ′ ≥ Z (see e.g., Föllmer and Schied (27)). Since
X ∈ L∞+ (Fu), the set{

ht ∈ L∞++(Ft)
∣∣∣ EP [Φ(X

ht

) ∣∣∣∣Ft] ≤ 1

}
is non void, so the definition is well-posed. Clearly, HΦ

0 = HΦ and HΦ
t (0) = 0.

We will also consider conditional Orlicz premia denoted for a general σ-
algebra G ⊆ F by

HΦ
G (X) := ess inf

{
ht ∈ L∞++(G)

∣∣∣ EP [Φ(X
ht

) ∣∣∣∣ G] ≤ 1

}
. (2)

The properties of HΦ
t are similar to those of HΦ and are reported in the

following proposition.

Proposition 3. Let Φ be a Young function, let s, t ∈ [0, T ] with s ≤ t and let
HΦ
t : L∞+ (FT )→ L∞+ (Ft) be defined as in (1). Then for each X, Y ∈ L∞+ (FT )

it holds that:

(a) X ≤ Y ⇒ HΦ
t (X) ≤ HΦ

t (Y )

(a’) Let X, Y > 0. If X ≤ Y, P (X < Y ) > 0 ⇒ HΦ
t (X) ≤ HΦ

t (Y ) with
P (HΦ

t (X) < HΦ
t (Y )) > 0

(b) HΦ
t (X + Y ) ≤ HΦ

t (X) +HΦ
t (Y )
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(c) X ∈ L∞+ (Ft)⇒ HΦ
t (X) = X

(d) HΦ
t (λsX) = λsH

Φ
t (X), ∀λs ∈ L∞++(Fs)

(e) HΦ
t (X + ηs) ≤ HΦ

t (X) + ηs, ∀ηs ∈ L∞+ (Fs)

(f) EP [X|Ft] ≤ HΦ
t (X) ≤ ‖X‖∞

(g) A ∈ Ft ⇒ HΦ
t (X1A) = 1AH

Φ
t (X)

(h) if X > 0, then

EP
[
Φ

(
X

HΦ
t (X)

) ∣∣∣∣Ft] = 1

(i) HΦ
t (X) = 1 ⇐⇒ E[Φ(X)|Ft] = 1

(j) if Xn ↓ X, or if Xn ↑ X, or if Xn → X with ‖Xn‖ ≤ k, then

HΦ
t (Xn)→ HΦ

t (X).

(k) if Ft is a regular version of the conditional distribution of X given Ft,
then

HΦ
t (X) = HΦ (Ft(·, ω))

(l) if X is independent of Ft, then HΦ
t (X) = HΦ(X).

Proof. The proof of (a) and (b) is straightforward and similar to the static
case. (a’) Let X, Y > 0, X ≤ Y with P (X < Y ) > 0. By item (h),

1 = EP
[
Φ

(
Y

HΦ
t (Y )

) ∣∣∣∣ Ft]
= EP

[
Φ

(
Y

HΦ
t (Y )

)
1{X=Y } + Φ

(
Y

HΦ
t (Y )

)
1{X<Y }

∣∣∣∣ Ft]
> EP

[
Φ

(
X

HΦ
t (Y )

) ∣∣∣∣ Ft] .
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Since Φ (X/h) is strictly decreasing in h, the thesis follows.
(c) If X ∈ L∞+ (Ft) then from the properties of Φ it follows that

ess inf

{
ht ∈ L∞++(Ft)

∣∣∣ EP [Φ(X
ht

) ∣∣∣∣ Ft] ≤ 1

}
= ess inf

{
ht ∈ L∞++(Ft)

∣∣∣ Φ

(
X

ht

)
≤ 1

}
= ess inf

{
ht ∈ L∞++(Ft)

∣∣∣ X ≤ ht

}
= X.

(d) It holds that

ess inf

{
ht ∈ L∞++(Ft)

∣∣∣ EP [Φ(λsX
ht

) ∣∣∣∣Ft] ≤ 1

}
= ess inf

{
λsht ∈ L∞++(Ft)

∣∣∣ EP [Φ(X
ht

) ∣∣∣∣Ft] ≤ 1

}
= λsH

Φ
t (X).

(g) follows immediately from (d).
(e) follows from (b) and (c).
(f) If E[X|Ft] > 0, then from the conditional Jensen inequality it follows that

E
[

Φ

(
X

E[X|Ft]

)∣∣∣∣Ft] ≥ Φ(1) = 1,

which gives the first part of the thesis. If instead E[X|Ft] = 0 on A ∈ Ft
with P (A) > 0, then

E[X|Ft] = E[X1A|Ft] + E[X1Ac|Ft] ≤ HΦ
t (X1A) +HΦ

t (X1Ac) = HΦ
t (X),

where the last equality follows from (g). The second part follows from (a).
(h) The set

At :=

{
ht ∈ L∞++ : EP

[
Φ

(
X

ht

) ∣∣∣Ft] ≤ 1

}
is downward directed, hence there exists zn ∈ At, zn ↓ HΦ

t (X), P -a.s. From
the dominated convergence theorem, it follows that

EP

[
Φ

(
X

HΦ
t (X)

) ∣∣∣Ft] ≤ 1.
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Let now z̄n ∈ L∞++, with z̄n < HΦ
t (X) and z̄n ↑ HΦ

t (X). Since HΦ
t (X) =

ess inf At, it holds that

EP

[
Φ

(
X

z̄n

) ∣∣∣Ft] > 1,

and again from the dominated convergence theorem,

EP

[
Φ

(
X

HΦ
t (X)

) ∣∣∣Ft] ≥ 1,

which gives the thesis.
(i) follows immediately from (h).
(j) Let Xn ↓ X. Then by monotonicity Hn := HΦ

t (Xn) ↓ H ≥ HΦ
t (X).

If H > 0, then it follows that

EP
[
Φ

(
Xn

H

) ∣∣∣Ft] ≥ 1,

and by the dominated convergence theorem

EP
[
Φ

(
X

H

) ∣∣∣Ft] ≥ 1.

Similarly,

EP
[
Φ

(
X

Hn

) ∣∣∣Ft] ≤ 1,

and by the dominated convergence theorem

EP
[
Φ

(
X

H

) ∣∣∣Ft] ≤ 1,

so

EP
[
Φ

(
X

H

) ∣∣∣Ft] = 1,

which from (h) implies that H = HΦ
t (X). If instead H = 0 on A ∈ Ft, then

also HΦ
t (X) = 0 on A, and the thesis follows by (g). The proof of continuity

from below is similar. To prove the last part of the thesis, let

Zn = sup
k≥n

Xk, Yn = inf
k≥n

Xk.
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Then Zn ≥ Xn, Zn ↓ X and Yn ≤ Xn, Yn ↑ X, so from monotonicity and the
first part of the thesis it follows that HΦ

t (Xn)→ HΦ
t (X).

(k) Let Ft be a regular version of the conditional distribution of X given Ft,
that is let Ft : R×Ω→ [0, 1] be such that for each ω ∈ Ω, Ft(·, ω) is a distri-
bution function on R and for each x ∈ R it holds Ft(x, ·) = EP [1{X≤x}|Ft].
Since

EP
[
Φ

(
X

ht

) ∣∣∣∣Ft] =

∫
Φ (x/h) dFt(x, ω) P -a.s.,

the thesis follows.
(l) if X is independent of Ft, then Ft(x, ω) = F (x) = P (X ≤ x) is a regular
version of the conditional distribution of X given Ft that does not depend
on ω, so the thesis follows from (k).

Example 4. If Φ(x) = xp with p ≥ 1, then

HΦ
t (X) = (E[Xp|Ft])1/p .

4. Dynamic robust Orlicz premia

In Bellini et al. (5) we introduced robust Orlicz premia, arising from
a penalized worst-case approach under ambiguity with respect to the true
measure P . We considered two canonical cases of ambiguity averse prefer-
ences: variational preferences as in Maccheroni, Marinacci and Rustichini
(41) and homothetic preferences as in Chateauneuf and Faro (10). We recall
the basic definitions and notations. We denote by Q the set of all probability
measures on (Ω,F) that are absolutely continuous with respect to P .

Definition 5. Let Φ be a Young function, let c : Q → [0,+∞] be a penalty
function satisfying infQ∈Q c(Q) = 0, and let β : Q → [0, 1] be a confidence
function satisfying supQ∈Q β(Q) = 1. The robust Orlicz premia are defined
by

HΦ,c(X) := inf

{
k > 0

∣∣∣ sup
Q∈Q

EQ
[
Φ

(
X

k

)]
− c(Q) ≤ 1

}
.

HΦ,β(X) := inf

{
k > 0

∣∣∣ sup
Q∈Q

EQ
[
β(Q)Φ

(
X

k

)]
≤ 1

}
.
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The corresponding dynamic robust Orlicz premia are defined as follows:

Definition 6. Let Φ be a Young function, let C = {ct}t∈[0,T ] be a family of
Ft-measurable penalty functions ct : Q → L0

+(Ft) satisfying infQ∈Q ct(Q) = 0,
and let B = {βt}t∈[0,T ] be a family of Ft-measurable confidence functions
βt : Q → L0

[0,1](Ft) satisfying supQ∈Q βt(Q) = 1, for each t ∈ [0, T ]. Let

t, u ∈ [0, T ] with t ≤ u. For X ∈ L∞+ (Fu), we define

HΦ,C
t (X) := ess inf

{
ht ∈ L∞++ (Ft)

∣∣∣ ess sup
Q∈Q

{
EQ
[

Φ

(
X

ht

)∣∣∣∣Ft]− ct(Q)

}
≤ 1

}
(3)

HΦ,B
t (X) := ess inf

{
ht ∈ L∞++ (Ft)

∣∣∣ ess sup
Q∈Q

{
EQ
[
βt(Q) Φ

(
X

ht

)∣∣∣∣Ft]} ≤ 1

}
(4)

Notice however that if, in (3), we define

ρt(X) := ess sup
Q∈Q

{EQ [X | Ft]− ct(Q)} , (5)

or similarly if, in (4), we define

ρt(X) := ess sup
Q∈Q

{βt(Q)EQ [X | Ft]} , (6)

then ρt is in both cases a dynamic risk measure that satisfies monotonicity
and convexity, and (3) and (4) can be rewritten in a unified way as follows:

HΦ,ρ
t (X) := ess inf

{
ht ∈ L∞++ (Ft)

∣∣∣ ρt(Φ

(
X

ht

))
≤ 1

}
. (7)

In other words, dynamic robust Orlicz premia arise by replacing the condi-
tional expectation operator in (1) with a more general dynamic risk measure
ρt that is convex. We begin by illustrating some simple special cases of
Definition 6 in the case of variational preferences.

Example 7. Let ct = 0 for each t ∈ [0, T ]. Then, ρCt (X) = ess sup[X | Ft],
and

HΦ,C
t (X) = ess inf

{
ht ∈ L∞++ (Ft)

∣∣∣ ess sup

[
Φ

(
X

ht

) ∣∣∣ Ft] ≤ 1

}
= ess sup[X | Ft].
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Example 8. Let Φ(x) = xp, with p ≥ 1, and let

ct(Q) =

{
0 if Q ∈ St
+∞ if Q /∈ St,

with St ⊂ Q, for t ∈ [0, T ]. Then,

HΦ,C
t (X) = ess sup

Q∈St
(EQ [Xp| Ft])1/p .

In particular, for p = 1 we get

HΦ,C
t (X) = ess sup

Q∈St
EQ [X| Ft] ,

which is a dynamic coherent risk measure in the usual sense.

Example 9. Let Φ(x) = xp, with a general C. Then,

HΦ,C
t (X) = ess sup

Q∈Q

(
EQ [Xp| Ft]
1 + ct(Q)

)1/p

.

Indeed, Definition 6 becomes

HΦ,C
t (X) = ess inf

{
ht ∈ L∞++ (Ft)

∣∣∣ ess sup
Q∈Q

{
EQ [Xp| Ft]

hpt
− ct(Q)

}
≤ 1

}
,

and the condition

ess sup
Q∈Q

{
EQ [Xp| Ft]

hpt
− ct(Q)

}
≤ 1

is equivalent to

ht ≥ ess sup
Q∈Q

(
EQ [Xp| Ft]
1 + ct(Q)

)1/p

.

Notice that the quantity 1/(1 + ct(Q)) is an Ft-measurable random variable
taking values in [0, 1], so it may be interpreted as a discount factor.

Some of the properties of dynamic Orlicz premia remain valid also in the
robust case; we list them in the following proposition.
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Proposition 10. Let Φ be a Young function, let s, t ∈ [0, T ] with s ≤ t, and
let HΦ,ρ

t : L∞+ (FT ) → L∞+ (Ft) be as in (7). Then, for each X, Y ∈ L∞+ (FT ),
it holds that:

(a) X ≤ Y ⇒ HΦ,ρ
t (X) ≤ HΦ,ρ

t (Y )

(b) HΦ,ρ
t (X + Y ) ≤ HΦ,ρ

t (X) +HΦ,ρ
t (Y )

(c) X ∈ L∞+ (Ft)⇒ HΦ,ρ
t (X) = X

(d) HΦ,ρ
t (λsX) = λsH

Φ,ρ
t (X), ∀λs ∈ L∞++(Fs)

(e) HΦ,ρ
t (X + ηs) ≤ HΦ,ρ

t (X) + ηs, ∀ηs ∈ L∞+ (Fs)

(f) HΦ,ρ
t (X) ≤ ‖X‖∞

(g) A ∈ Ft ⇒ HΦ,ρ
t (X1A) = 1AH

Φ,ρ
t (X)

(h) if ρt has the Lebesgue property, then for X > 0 it holds that

ρt

(
Φ

(
X

HΦ,ρ
t (X)

))
= 1

(i) if ρt has the Lebesgue property, then HΦ,ρ
t (X) = 1 ⇐⇒ ρt(Φ(X)) = 1

(j) if ρt has the Lebesgue property, then if Xn ↓ X, or if Xn ↑ X, or if
Xn → X with ‖Xn‖ ≤ k, it follows that

HΦ,ρ
t (Xn)→ HΦ,ρ

t (X)

(k) if ρt is conditionally law-invariant, then also HΦ,ρ
t is conditionally law-

invariant.

Proof. (a) follows immediately from the monotonicity of ρt. (b) Notice that

ρt

(
Φ

(
X + Y

HΦ,ρ
t (X) +HΦ,ρ

t (Y )

))

≤ ρt

(
HΦ,ρ
t (X)

HΦ,ρ
t (X) +HΦ,ρ

t (Y )
Φ

(
X

HΦ,ρ
t (X)

)
+

HΦ,ρ
t (Y )

HΦ,ρ
t (X) +HΦ,ρ

t (Y )
Φ

(
Y

HΦ,ρ
t (Y )

))

≤ HΦ,ρ
t (X)

HΦ,ρ
t (X) +HΦ,ρ

t (Y )
ρt

(
Φ

(
X

HΦ,ρ
t (X)

))
+

HΦ,ρ
t (Y )

HΦ,ρ
t (X) +HΦ,ρ

t (Y )
ρt

(
Φ

(
Y

HΦ,ρ
t (Y )

))
≤ 1,
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where the first inequality follows from the convexity of Φ and the second
from the convexity of ρt, from which the thesis follows.
(c) Notice that if X ∈ L∞+ (Ft), then ρt(X) = X, as a consequence of the
hypothesis infQ∈Q ct(Q) = 0 and supQ∈Q βt(Q) = 1. The thesis then follows
as in item (c) of Proposition 3. The proofs of (d), (e), (f), (g), (h), (i), (j),
(k) are identical to the corresponding items in Proposition 3, since under the
assumption that ρt has the Lebesgue property, the dominated convergence
theorem can still be applied.

Summing up, the relevant properties of ρt in Proposition 10 are monoton-
icity (for (a)), convexity (for (b)), constancy (for (c)), the Lebesgue property
(for (h), (i) and (j)), and conditional law-invariance (for (k)). In particular,
neither translation invariance of ρt (which is satisfied in the case of variational
preferences (5) but not in the case of homothetic preferences (6)), nor con-
ditional positive homogeneity (which is satisfied in the case of homothetic
preferences (6) but not in the case of variational preferences (5)) play a role
in the proof of Proposition 10. Sufficient conditions on the penalty functions
in (5) that guarantee the validity of these properties are well known in the
literature on dynamic convex risk measures; we refer e.g., to Detlefsen and
Scandolo (22), Föllmer and Schied (27). The case of homothetic preferences
is less explored.

5. Dynamic robust Haezendonck-Goovaerts risk measures

Dynamic robust Orlicz premia do not satisfy a translation invariance
property, and are defined only for nonnegative losses. A construction via
optimized translation-invariant extensions (Rockafellar and Uryasev (46) and
Rockafellar, Uryasev and Zabarankin (47)) that resolves both issues has been
suggested in Goovaerts et al. (33) (see also Bellini and Rosazza Gianin
(3; 4)), leading to the so-called Haezendonck-Goovaerts risk measures (HG
henceforth), of which a robust version has been introduced in Bellini et al.
(5). Their dynamic extension can be given as follows.

Definition 11. Let Φ be a Young function, let s, t ∈ [0, T ] with s ≤ t, and
let HΦ,ρ

t be as in (7). For X ∈ L∞(FT ), we define

HGΦ,ρ
t (X) := ess inf

xt∈L∞(Ft)
{xt +HΦ,ρ

t

(
(X − xt)+

)
}. (8)

All the properties of HΦ,ρ
t are inherited also by HGΦ,ρ

t .
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Proposition 12. Let Φ be a Young function, let s, t ∈ [0, T ] with s ≤ t, and
let HΦ,ρ

t be as in (7). Then, for each X, Y ∈ L∞(FT ), the following hold:

(a) X ≤ Y ⇒ HGΦ,ρ
t (X) ≤ HGΦ,ρ

t (Y )

(b) HGΦ,ρ
t (X + Y ) ≤ HGΦ,ρ

t (X) +HGΦ,ρ
t (Y )

(c) X ∈ L∞+ (Ft)⇒ HGΦ,ρ
t (X) = X

(d) HGΦ,ρ
t (λsX) = λsHG

Φ,ρ
t (X), ∀λs ∈ L∞++(Fs)

(e) HGΦ,ρ
t (X + ηt) = HGΦ,ρ

t (X) + ηt , ∀ηt ∈ L∞ (Ft)

(f) HGΦ,ρ
t (X) ≤ ‖X‖∞

(g) A ∈ Ft ⇒ HGΦ,ρ
t (X1A) = 1AHG

Φ,ρ
t (X)

(h) if ρt satisfies the Lebesgue property, then

Xn ↓ X ⇒ HGΦ,C
t (Xn)→ HGΦ,C

t (X), P -a.s.

(i) if ρt is conditionally law-invariant, then also HGΦ,ρ
t is conditionally

law-invariant.

Proof. (a) follows immediately from the monotonicity of HΦ,ρ
t .

(b) For any X, Y ∈ L∞(FT ) it holds that

HGΦ,ρ
t (X + Y ) = ess inf

xXt ,x
Y
t ∈L∞(Ft)

{xXt + xYt +HΦ,ρ
t

(
(X + Y − xXt − xYt )+

)
}

≤ ess inf
xXt ,x

Y
t ∈L∞(Ft)

{xXt + xYt +HΦ,ρ
t

(
(X − xXt )+

)
+HΦ,ρ

t

(
(Y − xYt )+

)
}

= ess inf
xXt ∈L∞(Ft)

{xXt +HΦ,ρ
t

(
(X − xXt )+

)
}+ ess inf

xYt ∈L∞(Ft)
{xYt +HΦ,ρ

t

(
(Y − xYt )+

)
}

= HGΦ,ρ
t (X) +HGΦ,ρ

t (Y ),

where the first inequality follows from the subadditivity of the positive part
and of HΦ,ρ

t .
(c) If X ∈ L∞+ (Ft), then

HGΦ,ρ
t (X) = ess inf

xt∈L∞(Ft)
{xt +HΦ,ρ

t

(
(X − xt)+

)
} = X.
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(d) If λs ∈ L∞++(Fs), then

HGΦ,ρ
t (λsX) = ess inf

xt∈L∞(Ft)
{xt +HΦ,ρ

t

(
(λsX − xt)+

)
}

= ess inf
xt∈L∞(Ft)

{λsxt +HΦ,ρ
t

(
(λsX − λsxt)+

)
} = λsHG

Φ,ρ
t (X),

from the conditional positive homogeneity of HΦ,ρ
t . (e) follows immediately

from (8). (f) and (g) can be proved as in Proposition 10. (h) from Proposition
10, item (j), it follows that HΦ,ρ

t is continuous from above, so, if Xn ↓ X,
then

inf
n
HGΦ,ρ

t (Xn) = inf
n

ess inf
xt∈L∞(Ft)

{xt +HΦ,ρ
t

(
(Xn − xt)+

)
}

= ess inf
xt∈L∞(Ft)

inf
n
{xt +HΦ,ρ

t

(
(Xn − xt)+

)
}

= ess inf
xt∈L∞(Ft)

{xt +HΦ,ρ
t

(
(X − xt)+

)
} = HGΦ,ρ

t (X),

from which the thesis follows. (i) can be proved as in the static case.

The preceding proposition shows that dynamic robust HG risk measures
are dynamic coherent risk measures in the sense of Delbaen (19) and Riedel
(45), so they possess a dual representation in terms of essential suprema of
conditional expectations, which is given in the following proposition. We
denote by Qt ⊂ Q the set of probability measures on (Ω,F) such that Q =
P on Ft.

Proposition 13. Let Φ be a Young function, let t, u ∈ [0, T ] with t ≤ u, and
let HGΦ,ρ

t be as in Definition 11, with ρt being continuous from above. Then,
for each X ∈ L∞(Fu),

HGΦ,ρ
t (X) = ess sup

Q∈Rt

EQ [X| Ft] , (9)

where

Rt := {Q ∈ Qt | EQ [Z| Ft] ≤ HΦ,ρ
t (Z+), for each Z ∈ L∞(Ft)}.

Proof. By Detlefsen and Scandolo (22) (see also Delbaen (19) and Klöppel
and Schweizer (35)) it follows that

HGΦ,ρ
t (X) = ess sup

Q∈Rt

EQ [X| Ft] ,
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where Rt = {Q ∈ Qt | EQ [Y | Ft] ≤ HGΦ,ρ
t (Y ), for each Y ∈ L∞(Fu)}.

Furthermore, from (8) it follows that

EQ [Y | Ft] ≤ HGΦ,ρ
t (Y ), ∀Y ∈ L∞(Fu),

is equivalent to

EQ [Y − xt| Ft] ≤ HΦ,ρ
t

(
(Y − xt)+

)
, ∀xt ∈ L∞(Ft), Y ∈ L∞(Fu),

and, moreover, to

EQ [Z| Ft] ≤ HΦ,ρ
t (Z+), ∀Z ∈ L∞(Fu),

from which the thesis follows.

6. Time-consistency properties

We start by recalling several definitions related to time-consistency that
have been considered in the literature.

Definition 14. For t ∈ [0, T ], let πt : L
∞(FT )→ L∞(Ft) be a dynamic risk

measure. Let 0 ≤ s < t ≤ T . We consider the following properties:

i) πt(X) ≤ πt(Y )⇒ πs(X) ≤ πs(Y )

ii) πt(X) = πt(Y )⇒ πs(X) = πs(Y )

iii) πs(πt(X)) = πs(X)

iv) πt(X) ≤ 0⇒ πs(X) ≤ 0 or πt(X) ≥ 0⇒ πs(X) ≥ 0.

Property i) is the standard definition of time-consistency, while property
iii) is commonly referred to as recursiveness. Properties i), ii) and iii) are
known to be equivalent for dynamic monetary risk measures (see e.g., Föllmer
and Schied (27)). As we show in the next lemma, they are also equivalent for
monotone, conditionally positively homogeneous, normalized dynamic risk
measures. We will therefore refer to i), ii) and iii) simply as time-consistency.
Properties iv) are called weak acceptance consistency and weak rejection
consistency, respectively.

Lemma 15. Let πt : L
∞
++(FT ) → L∞+ (Ft) be a monotone and conditionally

positively homogeneous dynamic risk measure with πt(1) = 1. Then proper-
ties i), ii), and iii) are equivalent.
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Proof. Clearly, i) implies ii). From conditional positive homogeneity and the
normalization πt(1) = 1, it follows that πt(πt(X)) = πt(1 · πt(X)) = πt(X),
hence ii) implies iii). The implication iii) ⇒ i) can be proved similarly to
Lemma 11.11 of Föllmer and Schied (27), where the proof of that implication
is based only on monotonicity.

It is straightforward to see that if Φ(x) = xp, p ≥ 1, in Definition 2, then
HΦ
t is time-consistent. Indeed, in this case (see Example 4)

HΦ
t (X) = (E[Xp|Ft])1/p ,

so
HΦ
s (HΦ

t (X)) = (E [(E[Xp|Ft]) |Fs])1/p = HΦ
s (X).

A related property for a conditional risk measure is iterativity (see e.g.,
Bühlmann (8), Gerber (31), Haezendonck and Goovaerts (34)), which re-
quires that for each sub σ-algebra G ⊂ F , it holds that

π(πG(X)) = π(X), (10)

where in the present context πG is defined as in (2). Different from time-
consistency, iterativity does not refer to a particular filtration fixed in ad-
vance. Clearly, if Φ(x) = xp with p ≥ 1, then HΦ

G is iterative. In the next
theorem we provide a direct proof that, in fact, the only conditional Orlicz
premia that satisfy iterativity are conditional certainty equivalents with a
power function Φ (i.e., conditional p-norms).

Theorem 16. Let HΦ
G be as in (2). If HΦ

G is iterative in the sense of (10),
then

HΦ
G (X) = Φ−1 (E[Φ(X)|G]) , (11)

with Φ(x) = xp for some p ≥ 1.

Proof. We first prove that if HΦ
G satisfies iterativity, then

HΦ
0 (X) = Φ−1 (E[Φ(X)]) .

Let X ∈ L∞+ (F). If HΦ
0 (X) = 1, then by Proposition 3 item (i),

HΦ
0 (X) = Φ−1(E[Φ(X)]).
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If HΦ
0 (X) 6= 1, then by the continuity of Φ there exists z > 0 and q ∈ (0, 1)

such that
qΦ(z) + (1− q)Φ(HΦ

0 (X)) = 1, (12)

which implies that HΦ
0 (Z) = 1, where Z is defined as follows:

Z :=

{
z with prob. q,

HΦ
0 (X) with prob. 1− q.

Since (Ω,F , P ) is nonatomic, there exists A ∈ F with P (A) = q and X ′ ∈ F
with X ′

d
= X and X ′ independent of A. Letting Y := z1A + X ′1Ac and

G := {A,Ac,Ω, ∅}, by items (g) and (l) in Proposition 3 and law invariance
of HΦ

0 , it follows that

HΦ
G (Y ) = z1A +HΦ

G (X ′)1Ac = z1A +HΦ
0 (X ′)1Ac = z1A +HΦ

0 (X)1Ac ,

so HΦ
G (Y )

d
= Z and law invariance of HΦ

0 implies HΦ
0 (HΦ

G (Y )) = HΦ
0 (Z) = 1.

From iterativity, HΦ
0 (Y ) = HΦ

0 (HΦ
G (Y )) = 1, so

1 = E[Φ(Y )] = qΦ(z) + (1− q)E[Φ(X ′)] = qΦ(z) + (1− q)E[Φ(X)]. (13)

Upon comparing (13) with (12) we get that

E[Φ(X)] = Φ(HΦ
0 (X)).

The result for a general t follows from conditional law invariance; the final
part of the thesis follows as in the next theorem by the well known charac-
terization of positively homogeneous certainty equivalents.

A characterization result under the hypothesis of time-consistency is more
difficult to obtain and requires additional hypotheses on the filtration Ft.
Following Kupper and Schachermayer (37), we assume that time is discrete
(but note that a continuous-time dynamic risk measure can be embedded
in this discrete-time setting) and that (Ω,F , (Ft)t=0,1,...,T , P ) is a standard
filtered probability space, i.e., it is isomorphic to [0, 1]N with its Borel σ-
algebra and the product of Borel measures λN. It turns out that in this
setting the only dynamic Orlicz premia that satisfy time-consistency are also
conditional certainty equivalents with a power function Φ, hence we obtain
again an ‘if and only if’ characterization result.
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Theorem 17. Let (Ω,F , (Ft)t=0,1,...,T , P ) be a standard filtered probability
space and let HΦ

t : L∞+ (FT ) → L∞+ (Ft) be defined as in (1). If HΦ
t is time-

consistent, then

HΦ
t (X) = Φ−1 (EP [Φ(X)| Ft]) , for any X ∈ L∞+ (FT ), (14)

with Φ(x) = xp for some p ≥ 1.

Proof. To prove the result we will apply Theorem 1.4 of (37). We start
by verifying that all its hypotheses are satisfied. First of all, HΦ

0 is real-
valued. Furthermore, HΦ

t satisfies constancy and locality (by Proposition 3
items (c) and (g)) and time-consistency by assumption. Law invariance of
HΦ

0 is straightforward. The Fatou property of HΦ
0 has been established in

Haezendonck and Goovaerts (34) and Goovaerts et al. (33) (see also Prop.
2(g) in Bellini and Rosazza Gianin (3)), while ‖ · ‖∞-continuity of HΦ

0 is a
direct consequence of Proposition 3 items (b) and (f). Strict monotonicity
of HΦ

0 follows from Lemma 3 in Bellini and Rosazza Gianin (3) since HΦ
0

on L∞+ (for X 6= 0) can be seen as the unique solution to the equation
EP
[
Φ
(
X/HΦ

0

)]
= 1. All the hypotheses of Theorem 1.4 of (37) are then

satisfied on HΦ
0 restricted to L∞++(FT ).

By applying Theorem 1.4 of Kupper and Schachermayer (37), it follows
that HΦ

t is of the form in (14) for some strictly increasing and continuous `
and L∞++(FT ). Moreover, ` reduces to a power function or a logarithmic func-
tion because of positive homogeneity of HΦ

t and by the De Finetti-Nagumo-
Kolmogorov Theorem on the characterization of expected utility functional
(see De Finetti (17), and also Frittelli (28) and Laeven and Stadje (38)). Sub-
additivity of HΦ

t excludes the logarithmic case (see, for instance, Example 2
in Bellini et al. (5)).

The case of HΦ
0 on the whole L∞+ (FT ) can be obtained by continuity.

Assume indeed that X takes the value 0 in A ∈ FT . Then, Xn = 1
n
1A +

X1Ac → X in L∞, so by ‖ · ‖∞-continuity it follows that HΦ
0 (Xn)→ HΦ

0 (X).
Once ` is extended with continuity at 0, for t = 0 (14) is true for any
X ∈ L∞+ (FT ).

By considering the value of HΦ
0 on Bernoulli random variables, it is easy

to check that indeed ` = Φ. The case of a general t follows from time-
consistency.

Let us now consider the case of dynamic robust Orlicz premia, defined
by (7). If Φ(x) = xp for p ≥ 1 and if ρt is positively homogeneous as in (6),
then time-consistency of HΦ,ρ

t is equivalent to time-consistency of ρt.
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Lemma 18. Let HΦ,ρ
t be as in (7) with Φ(x) = xp for p ≥ 1 and let ρt

be positively homogeneous. Then HΦ,ρ
t is time-consistent if and only if ρt is

time-consistent.

Proof. Under these hypotheses, it holds that

HΦ,ρ
t (X) = (ρt(X

p))1/p and ρt(X) = (HΦ,ρ
t (X1/p))p.

If ρt is time-consistent, then

HΦ,ρ
s (HΦ,ρ

t (X)) = HΦ,ρ
s ((ρt(X

p))1/p) = (ρs (ρt (Xp)))1/p =

= (ρs (Xp))1/p = HΦ,ρ
s (X),

which shows time-consistency of HΦ,ρ
t . Similarly, if HΦ,ρ

t is time-consistent,
then

ρs(ρt(X)) = ρs((H
Φ,ρ
t (X1/p))p) = (HΦ,ρ

s (HΦ,ρ
t (X1/p)))p =

= (HΦ,ρ
s (X1/p))p = ρs(X).

Time-consistency of ρt of the form (5) is well studied in the literature;
see e.g., Bion-Nadal (6; 7) for a characterization via an additive cocycle
property of the penalty function. Time-consistency of ρt of the form (6) is
less explored.

The following results provide some connections (or ‘inheritance relations’)
between time-consistency properties of dynamic robust Orlicz premia HΦ,ρ

t

and the corresponding dynamic robust Haezendonck-Goovaerts risk measures
HGΦ,ρ

t . In order to prove time-consistency of HGΦ,ρ
t , by Bion-Nadal (6; 7)

and Delbaen (19), it suffices to verify m-stability of the set of generalized
scenarios in its dual representation.

Proposition 19. Let HΦ,ρ
t be a dynamic robust Orlicz premium as in (7)

and let ρt satisfy the Lebesgue property. If, for each s, t ∈ [0, T ] with s ≤ t
and for any X ∈ L∞(FT ) it holds that

HΦ,ρ
s (HΦ,ρ

t (X)) ≤ HΦ,ρ
s (X), (15)

then the corresponding dynamic robust risk measure HGΦ,ρ
t in (8) is time-

consistent.
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Proof. Denote by HGΦ,ρ
t,u the restriction of HGΦ,ρ

t to L∞(Fu). By Proposition

13, HGΦ,ρ
t,u has the following dual representation:

HGΦ,ρ
t,u (X) = ess sup

R∈Rt,u

ER [X| Ft] , X ∈ L∞(Fu),

where

Rt,u = {R ∈ Pt,u | ER [Z| Ft] ≤ HΦ,ρ
t,u (Z+) for any Z ∈ L∞(Fu)} (16)

and Pt,u is the subset of probability measures in Pt that are defined on
(Ω,Fu). By Bion-Nadal (6; 7) and Delbaen (19), in order to prove time-
consistency of HGΦ,ρ

t it is sufficient to verify the m-stability of the dual sets
(Rt,u)0≤t≤u≤T . Let 0 ≤ s ≤ t ≤ u ≤ T and let R1 ∈ Rs,t, R2 ∈ Rt,u. Denote
by R̄ the pasting between R1 and R2. To prove that R̄ belongs toRs,u, notice
that from (15) it follows that for any Y ∈ L∞(Fu)

ER̄ [Y | Fs] = ER1 [ER2 [Y | Ft]| Fs] ≤ ER1 [H
Φ,ρ
t (Y +) | Fs]

≤ HΦ,ρ
s (HΦ,ρ

t (Y +)) ≤ HΦ,ρ
s (Y +),

which implies that R̄ ∈ Rs,u.

In particular, the hypothesis (15) in Proposition 19 is satisfied if HΦ,ρ
t is

time-consistent. A weaker version of the thesis holds in much more general
situations, as the following proposition shows.

Proposition 20. Let (Ht)t∈[0,T ] be any family of functionals Ht : L
∞
+ (FT )→

L∞+ (Ft) satisfying property (15), constancy and cash-subadditivity. Then the
corresponding dynamic risk measure (HGt)t∈[0,T ] defined as in (8) is weakly
rejection consistent in the sense of Definition 14, that is, for any 0 ≤ s ≤
t ≤ T ,

HGt(X) ≥ 0⇒ HGs(X) ≥ 0.

Proof. Suppose that HGt(X) ≥ 0 for some X ∈ L∞(FT ). By (8) it follows
that

xt +Ht

(
(X − xt)+

)
≥ 0, ∀xt ∈ L∞(Ft),

hence, for any s ≤ t,

xs +Ht

(
(X − xs)+

)
≥ 0, ∀xs ∈ L∞(Fs). (17)
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Fix now any s ≤ t. We are going to prove that xs + Hs ((X − xs)+) ≥ 0 for
any xs ∈ L∞(Fs), hence HGs(X) ≥ 0. By assumption (15) and constancy
of Ht, for any xs ∈ L∞− (Fs) inequality (17) becomes

Hs(Ht((X − xs)+)) ≥ Hs(−xs)
Hs((X − xs)+) ≥ −xs
xs +Hs((X − xs)+) ≥ 0. (18)

A fortiori, inequality (18) is satisfied also for any xs ∈ L∞+ (Fs). For an
arbitrary xs ∈ L∞(Fs), set A = {xs ≥ 0} ∈ Fs. Inequality (17) implies
therefore that

xs1A +Ht((X − xs)+) ≥ −xs1Ac .

Proceeding as above, we get

Hs(xs1A +Ht((X − xs)+)) ≥ Hs(−xs1Ac)

Hs(xs1A) +Hs(Ht((X − xs)+)) ≥ −xs1Ac (19)

xs1A +Hs((X − xs)+) ≥ −xs1Ac (20)

xs +Hs((X − xs)+) ≥ 0,

where (19) follows from subadditivity and constancy, while (20) follows from
assumption (15) and constancy of Hs. From the arguments above it follows
that xs + Hs((X − xs)+) ≥ 0 holds for any xs ∈ L∞(Fs), hence HGs(X) ≥
0.

The following result is a partial converse of Proposition 20. We omit the
proof, which follows immediately by (8).

Proposition 21. Let (Ht)t∈[0,T ] be a family of functionals Ht : L∞+ (FT ) →
L∞+ (Ft) satisfying monotonicity and constancy. If the corresponding dynamic
risk measure HGt satisfies weak rejection consistency in the sense of Defini-
tion 14 item v), then if for each xt ∈ L∞(Ft) it holds that

Ht

(
(Y − xt)+

)
≥ Ht

(
(−xt)+

)
,

then for each xs ∈ L∞(Fs), 0 ≤ s ≤ t, it holds that

Hs

(
(Y − xs)+

)
≥ Hs

(
(−xs)+

)
.
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Notice that the thesis of Proposition 21 is weaker than and is implied by
time-consistency of Ht. Indeed,

Ht

(
(Y − xt)+

)
≥ Ht

(
(−xt)+

)
for any xt ∈ L∞(Ft)

implies that

Ht

(
(Y − xs)+

)
≥ Ht

(
(−xs)+

)
for any xs ∈ L∞(Fs),

and by monotonicity and time-consistency of Hs it follows that

Hs

(
(Y − xs)+

)
= Hs

(
Ht

(
Y − xs)+

))
≥ Hs

(
Ht

(
(−xs)+

))
= Hs

(
(−xs)+

)
,

for any xs ∈ L∞(Fs).

7. Conclusions

In this paper we have focused on introducing and developing the mathem-
atical and probabilistic theory of dynamic return risk measures, and dynamic
Orlicz premia and Haezendonck-Goovaerts (HG) risk measures in particular.
An interesting and relevant related problem is that of statistical inference
for dynamic return risk measures. The results presented in this paper nat-
urally precede, and can serve as a starting point for the development of,
such statistical inference techniques. This resembles the static case where
the theory of return risk measures, and Orlicz premia and HG-risk measures
in particular, has been developed since the eighties of the previous century,
and much more recently their statistical inference has been studied in several
papers (e.g., Ahn and Shyamalkumar (1), Liu, Peng and Wang (40), Mao
and Hu (42), Peng, Wang and Zheng (43), Wang and Peng (51)). We believe
the development of statistical inference techniques for dynamic return risk
measures is a promising future research avenue.
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