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Abstract

We develop a method to solve, theoretically and numerically, general optimal stopping
problems. Our general setting allows for multiple exercise rights, i.e., optimal multiple
stopping, for a robust evaluation that accounts for model uncertainty, and for general
reward processes driven by multi-dimensional jump-diffusions. Our approach relies on first
establishing robust martingale dual representation results for the multiple stopping problem
that satisfy appealing pathwise optimality (i.e., almost sure) properties. Next, we exploit
these theoretical results to develop upper and lower bounds that, as we formally show, not
only converge to the true solution asymptotically, but also constitute genuine pre-limiting
upper and lower bounds. We illustrate the applicability of our approach in a few examples
and analyze the impact of model uncertainty on optimal multiple stopping strategies.
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1 Introduction

In this paper we analyze general optimal stopping problems of the following form:

Y ∗,Lt := sup
t≤τ1<···<τL

(τ1,...,τL)∈Tt(L)

sup
Q∈Q

EQ

[
L∑
l=1

Hτl

∣∣∣Ft] , 0 ≤ t ≤ T, (1.1)

where Tt(L) is a family of stopping time vectors, L is a number of exercise rights, T <∞ is a
fixed time horizon, Q is a family of probabilistic models, and H is a general F�-adapted reward
process. (The operator sup is to be understood as ess sup if it applies to an uncountable
family of random variables.) The optimal stopping problem (1.1) features generality along
three dimensions: (i) it allows for optimal multiple stopping (when L > 1), (ii) it allows for
a robust evaluation that explicitly takes probabilistic model uncertainty (i.e., ambiguity) into
account (when Q is not a singleton), and (iii) it allows for general reward processes that will
be driven by multi-dimensional jump-diffusion processes. The process Y ∗,Lt is referred to as
the upper Snell envelope of H due to L exercise rights after the seminal work of Snell [75].
Problems of this type, or special cases thereof, occur naturally in a wide variety of applications
in probability, operations research, economics and finance.

Our aim is to develop upper and lower bounds on Y ∗,Lt that satisfy several desirable proper-
ties. We achieve this by first establishing suitable martingale dual representations for problem
(1.1) that can be viewed as significant generalizations of the classical additive dual represen-
tations for standard (i.e., Q = {Q} as opposed to robust) optimal stopping problems, devel-
oped independently by Rogers [65] and Haugh and Kogan [45] (see also the early Davis and
Karatzas [32]) and their extension to standard multiple stopping problems in Schoenmakers
[71]. (A multiplicative dual representation for standard optimal stopping problems was pro-
posed by Jamshidian [47].) Our dual representations take the form of an infimum over (robust)
martingales, with no appearance of stopping times.

An appealing feature—both theoretically and for numerical stability—of the dual represen-
tations we establish is their pathwise optimality, i.e., their almost sure property. Already when
L = 1 these results are new and of independent interest for robust optimal single stopping.
They are developed here in the general setting of robust optimal multiple stopping (1.1). The
almost sure nature of the dual representations suggests that finding a ‘good’ martingale that is
‘close’ to a ‘surely optimal’ martingale will yield tight and nearly constant upper bounds. The
target can be the unique (robust) Doob martingale, to be constructed from an approximation
to the upper Snell envelope or, more generally, a martingale for which the dual representa-
tion’s infimum is attained and the almost sure property is satisfied. While this phenomenon of
tightness and constancy is known in the case of standard, non-robust single stopping problems
(i.e., when Q = {Q} and L = 1, see Rogers [66] and Schoenmakers, Zhang and Huang [72]), we
will analyze it in our general setting of robust stopping. We will show in particular that a low
(vanishing in probability) robust variance implies a tight (converging in L1) approximation.
The mathematical details of these results are delicate.

These new theoretical results justify and enable us to next develop a numerically imple-
mentable method to obtain upper and lower bounds to Y ∗,Lt with desirable properties. Our
lower bound, derived from the proposed exercise strategy, will, as we formally show, not only
converge to the optimal solution asymptotically but also be ‘biased low’ at the pre-limiting level
in a Brownian-Poisson filtration. This is not the case for the initially proposed upper bound:
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it converges to the true solution but is not in general ‘biased high’. We therefore also develop a
second upper bound that as we prove both converges to the true solution asymptotically and is
biased high in a Brownian-Poisson filtration. It is based on a Lipschitzian L2-approximation,
with a Lipschitz constant that we explicitly derive, and a suitable (reversed) application of
Jensen’s inequality. We will refer to this second upper bound as our genuine upper bound.
The computational complexity of both upper bounds is only linear in the number of exercise
rights, and our method does not require nested simulation.

We provide extensive numerical examples, including single and multiple stopping problems,
univariate and multivariate stochastic drivers, increasing and decreasing reward functions, and
pure diffusion and jump-diffusion models, to illustrate the applicability and generality of our
approach. They demonstrate that our approach yields tight upper and lower bounds that, due
to almost sure properties, moreover have low standard errors. They also analyze the impact
of multiple vs. single stopping rights and reveal that employing a robust evaluation that takes
ambiguity into account is highly relevant for optimal stopping, especially in the presence of
multiple exercise rights.

When embedded in a Brownian-Poisson filtration, the problems we analyze are naturally
represented as stopping problems with respect to g-expectations (Peng [60, 61]), leading to
backward stochastic differential equations (BSDEs). Hence, as a contribution to the BSDE lit-
erature of independent interest, we explicitly construct novel genuine upper and lower bounds
to BSDE solutions with positively homogeneous convex drivers in a Brownian-Poisson filtra-
tion. Bender, Schweizer and Zhuo [16], when analyzing solutions to discrete-time (reflected)
BS∆Es rather than the continuous-time BSDEs we consider, develop upper and lower bounds
applying techniques different from the techniques we employ. Bender, Gärtner and Schweizer
[17] construct Monte Carlo upper and lower bounds for a class of discrete-time stochastic dy-
namic programs which includes discretizations of multiple stopping problems. Our genuine
upper and lower bounds apply directly to the original continuous-time problem. Our genuine
lower bound takes advantage of an almost sure property of a ‘second kind’ that we formally
establish in order to reduce its variance—‘second kind’ to distinguish it from the additive dual
representation’s almost sure property. This almost sure property entails that the difference
between the BSDEs terminal condition and the associated (robust) martingale is constant al-
most surely. Our genuine upper bound for the continuous-time problem is based on forward
simulation of an approximate BSDE solution. The construction is somewhat related to the
a posteriori criterion for error evaluation introduced in Bender and Steiner [14] in a Brow-
nian filtration, and developed here to obtain explicit genuine upper bounds for BSDEs in a
Brownian-Poisson filtration.

The development of numerically implementable methods to obtain approximations to prob-
lems of the type (1.1) but with Q a singleton (no ambiguity), L = 1 (single stopping), and with
H multi-dimensional but satisfying strong conditions, started with the regression-based Monte
Carlo methods of Carriere [27] and Longstaff and Schwartz [54]; see also Tsitsiklis and Van
Roy [78] and Clément, Lamberton and Protter [30]. These methods yield lower bounds to Y ∗,1t

by approximating the optimal stopping time using regression and are commonly referred to as
“primal” approaches. An important example of a non-regression based primal approach is the
stochastic mesh method of Broadie and Glasserman [21] (see, for further details, Glasserman
[41] and also Belomestny, Kaledin and Schoenmakers [13]). “Dual” algorithms that exploit
additive dual representations to numerically compute upper bounds were first proposed by
Andersen and Broadie [1] in the standard single stopping problem and were further developed
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by e.g., Belomestny, Bender and Schoenmakers [10] to allow for non-nested simulation. While
primal methods rely in a sense on constructing an appropriate stopping time, dual methods
rely on constructing an appropriate martingale. Brown, Smith and Sun [22] in an innovative
paper enlarge the information on which an exercise decision may depend in dual optimization,
yielding tight upper bounds.

Model uncertainty, and the distinction between risk and ambiguity, has received much
attention in recent years. Under the Bayesian paradigm, as adopted in Savage’s [70] subjective
expected utility model, this distinction is, in a sense, nullified, through subjective probabilities
resulting from a subjective prior probability over probabilistic models that quantifies model
uncertainty. A popular approach beyond the Bayesian paradigm is provided by the multiple
priors model of Gilboa and Schmeidler [40], which is a decision-theoretic formalization of the
classical Waldian maxmin decision rule (Wald [79]; see also Huber [46]) and experimentally
motivated by the Ellsberg [36] paradox. These models are intimately related to coherent,
convex and entropy convex measures of risk in financial risk measurement (Föllmer and Schied
[37, 38], Frittelli and Rosazza Gianin [39], Ruszczyński and Shapiro [67, 68], and Laeven and
Stadje [51]). They explicitly recognize that probabilistic models may be misspecified and
are often referred to as robust approaches (Hansen and Sargent [44]). The literature on robust
single stopping theory is rapidly growing; it includes Riedel [63], Krätschmer and Schoenmakers
[49], Bayraktar, Karatzas and Yao [5], Bayraktar and Yao [6], Cheng and Riedel [28], Øksendal,
Sulem and Zhang [59], Belomestny and Krätschmer [11, 12], Bayraktar and Yao [7, 8, 9], Ekren,
Touzi, and Zhang [35], Matoussi, Piozin, and Possamäı [56], Matoussi, Possamäı, and Zhou
[57], and Nutz and Zhang [58]. However, numerically implementable methods to solve general
optimal stopping problems of the form (1.1) have not been well-developed as yet. Krätschmer
et al. [50] propose a numerically implementable method for single stopping problems under
uncertainty in drift and jump intensity. Their approach is dual but not path-wise, i.e., it does
not rely on a dual representation with the appealing almost sure property, and cannot handle
multiple stopping problems.

The multiple stopping problem can be viewed as L nested single stopping problems, where
the decision-maker first chooses between stopping at time τ1 on the one hand, thus collecting the
reward and entering into a new contract with L−1 exercise rights, and retaining L exercise rights
on the other hand, and so on. Multiple exercise rights occur naturally in many applications
across various fields. For example, in environmental economics, a swing option gives the investor
the right to change his purchased energy quantity a number of times per time period; in finance,
a flexible interest rate cap gives the investor the right to exercise at each interest rate reset
date a number of times over the life of the contract; and in insurance, a partial surrender
option provides a payoff to the policyholder each time he partially surrenders his life insurance
contract; see e.g., Carmona and Dayanik [23] and Carmona and Touzi [24] and the references
therein. Kobylanski, Quenez and Rouy-Mironescu [48] analyze the standard multiple stopping
problem (without ambiguity) allowing the payoff to be a general functional of an ordered
sequence of stopping times. Bender, Schoenmakers and Zhang [15] develop a dual approach to
generalized multiple stopping problems with respect to standard conditional expectations that
is intimately related to the information relaxation approach of Brown, Smith and Sun [22].
A primal-dual algorithm for standard multiple stopping with respect to standard conditional
expectations in the context of flexible interest rate caps has been proposed in Balder, Mahayni
and Schoenmakers [3].

As an important application, our approach may be used for robust no-arbitrage pricing
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(Hansen and Jagannathan [43], Cochrane and Saá-Requejo [31]) of American-style derivatives
with possibly multiple exercise rights, via superhedging. This entails a significant advancement
of the standard approach, where in a usually incomplete market the corresponding stopping
problem is solved with respect to an arbitrarily chosen (local equivalent martingale) measure.
Our results can also be applied to indifference valuation (seller’s perspective; Carmona [25],
Laeven and Stadje [52]) of general optimally stopped reward processes under the multiple priors
model. Another application is that of robust risk measurement (Ben-Tal and Nemirovski [18],
Bertsimas and Brown [19], Föllmer and Schied [38]) to determine e.g., the risk capital required
to cover optimally stopped reward processes.

The remainder of this paper is organized as follows. In Section 2 we recall some basic
notions, establish some general properties, introduce the robust optimal multiple stopping
problem, and provide some examples. In Section 3, we present our pathwise dual representa-
tions and establish our results on surely optimal (robust) martingales. In Section 4, we outline
a general primal-dual algorithm and prove its convergence. Section 5 presents explicit upper
and lower bounds in a Brownian-Poisson filtration. Section 6 provides extensive numerical
results. All proofs and several auxiliary results are in the Online Appendix.

2 Robust Optimal Multiple Stopping

2.1 Basic Notions and General Properties

We start by considering a general stochastic setup. We let
(
Ω, (Ft)t∈{0,...,T} ,P

)
be a filtered

probability space and let X be a linear subspace of L0(Ω,F ,P) with F := FT . We further
assume that X has a lattice structure, i.e., X is closed under the operations ∧ (min) and ∨
(max), and that X contains all indicator functions 1A, A ∈ F . ((In)equalities between random
variables are understood in the P-almost sure sense, often without explicit mention.)

To represent preferences, we consider a family of mappings ρ := (ρt)t=0,...,T ,

ρt : X→ X ∩ L0(Ω,Ft,P).

It is referred to as a monotone, regular, recursive, conditional translation invariant dynamic
monetary utility functional, henceforth DMU for short, if it satisfies the following conditions:

(C1) ρt (X) ≤ ρt (Y ) for all X,Y ∈ X with X ≤ Y and t ∈ {0, . . . , T} (monotonicity).

(C2) ρt (1AX) = 1Aρt (X) for all X ∈ X, A ∈ Ft and t ∈ {0, . . . , T} (regularity).

(C3) ρt = ρt ◦ ρt+1 for all t ∈ {0, . . . , T − 1} (recursiveness).

(C4) ρt (X + Y ) = ρt (X) + Y for all X,Y ∈ X with Y ∈ Ft and t ∈ {0, . . . , T} (conditional
translation invariance).

As additional properties we consider:

(P1) ρt(X + Y ) ≤ ρt(X) + ρt(Y ) for all X,Y ∈ X and t ∈ {0, . . . , T} (subadditivity).

(P2) [X ≤ 0 and ρt(X) ≥ 0] =⇒ X = 0, for all X ∈ X and t ∈ {0, . . . , T} (sensitivity).

(P3) ρt (λX) = λρt (X) for all X ∈ X, λ ≥ 0 and t ∈ {0, . . . , T} (positive homogeneity).
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Conditions (C1)–(C4) will always be assumed. In the sequel, we will mention explicitly which
of the properties (P1)–(P3) is required. Properties (P1) and (P2) also entail the implication
[X ≥ 0 and ρt(X) ≤ 0] =⇒ X = 0; see Lemma A.1 in Appendix A.1. DMUs that satisfy
(P1)–(P3), in addition to (C1)–(C4), take the form of robust, or worst case, expectations and
have been widely used in applied probability, operations research, economics and finance; see
the references in the Introduction and Section 2.3 below.

In this paper, we will frequently use the following implications of (C2) and (C4):

(C5) ρt (0) = 0 for all t ∈ {0, . . . , T} (normalization).

(C6) ρt (X) = X for all X ∈ X with X ∈ Ft and t ∈ {0, . . . , T} (Ft-invariance).

Let H be the set of adapted processes (Ut)t∈{0,...,T} such that Ut ∈ X ∩ L0(Ω,Ft,P). A
process M = (Mt)t∈{0,...,T} ∈ H is said to be a ρ-martingale if

Mt = ρt(Mt+1), 0 ≤ t < T. (2.1)

We present two auxiliary lemmas. The first lemma provides a generalization of Doob’s optional
sampling theorem towards our setup:

Lemma 2.1 (Doob) Suppose ρ satisfies (C1)–(C4). Then, for any ρ-martingale M and any
stopping time τi, i ≤ τi ≤ T , it holds that ρi (Mτi) = Mi, 0 ≤ i ≤ T.

Due to the next lemma, the properties of recursiveness (C3) and conditional translation invari-
ance (C4) carry over to stopping times, as we will exploit later:

Lemma 2.2 Let ρ satisfy (C1)–(C4), and let t ∈ {0, . . . , T} be fixed. Consider, for any
stopping time τ , t ≤ τ ≤ T , the functional

ρτ (X) :=
T∑
j=t

1τ=jρj(X).

Then, ρτ acts from FT → Fτ ⊃ Ft, and

(i) ρτ satisfies ρt = ρt ◦ ρτ ;

(ii) ρτ (X + Y ) = X + ρτ (Y ), for X ∈ Fτ , Y ∈ FT .

2.2 The Stopping Problem

Consider a fixed adapted reward, or (discounted) cash-flow, process H = (Ht)t∈{0,...,T} ∈ H
and a DMU decision-maker with L exercise rights that have to be exercised at different exercise
dates. For each fixed t and L, 0 ≤ t ≤ T , let Tt(L) be the family of stopping vectors (τ1, . . . , τL)
such that τ1 ≥ t and τl ≥ τl−1 + 1 for all l, 1 < l ≤ L. The decision-maker faces the following
robust optimal multiple stopping problem:

Y ∗,Lt := ess sup
t≤τ1<τ2<···<τL

ρt

(
L∑
l=1

Hτl

)
, t ∈ {0, . . . , T}, (2.2)

for a DMU functional ρ that satisfies (C1)–(C4). (We note that problem (2.2) is even slightly
more general than problem (1.1), which arises when additionally (P1)–(P3) are satisfied.)
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Henceforth, we write sup (and inf) instead of ess sup (and ess inf) for convenience, understand-
ing that they apply to an uncountable family of random variables. For a clean formulation of
the multiple stopping problem (2.2), we extend the cash-flow process by setting Hj ≡ 0 and
Fj ≡ FT , for j = T + 1, T + 2, . . .. That is, the subset of rights l, l = 2, . . . , L, not exercised
by time T become valueless. Hence, for any ρ-martingale M , Mj = MT , j > T .

When L ≡ 1, the single stopping problem

Y ∗t ≡ Y
∗,1
t = sup

τ∈Tt
ρt(Hτ ), t ∈ {0, . . . , T}, (2.3)

occurs as a special case, where the family of stopping times Tt ≡ Tt(1) takes values in the set
{t, . . . , T}.

The multiple stopping problem can be viewed as L nested single stopping problems with
only a single exercise right. Indeed, setting Y ∗,0 ≡ 0, Y ∗,1 ≡ Y ∗ is the upper Snell envelope of
H due to a single exercise right. Then, for multiple exercise rights L ≥ 1, Y ∗,L can be viewed
as the upper Snell envelope of the process

Ht + ρt

(
Y ∗,L−1
t+1

)
, t ∈ {0, . . . , T − 1},

due to only a single exercise right.
Let us denote the set of ρ-martingales M with M0 = 0 by Mρ

0. There exists a unique
ρ-martingale M∗ρ ∈Mρ

0 and a non-decreasing predictable A∗ρ ∈ H such that

Y ∗t = Y ∗0 +M∗ρt −A
∗ρ
t , t ∈ {0, . . . , T}, (2.4)

which represents the ρ-Doob decomposition of Y ∗ = (Y ∗t )t∈{0,...,T}. It is easy to verify that, for
t ∈ {0, . . . , T − 1},

M∗ρt+1 −M
∗ρ
t = Y ∗t+1 − ρt

(
Y ∗t+1

)
, and A∗ρt+1 −A

∗ρ
t = Y ∗t − ρt

(
Y ∗t+1

)
. (2.5)

Henceforth, the ρ-martingale M∗ρ will often be referred to as the ρ-Doob martingale and we
often suppress its superscript ρ to simplify notation.

In Appendix A.2, we establish some auxiliary results for problem (2.3) that will be exploited
in the proofs of the results that follow.

2.3 Examples

We provide the following examples in which specific versions of the robust optimal multiple
stopping problem of the general form (2.2) occur naturally:

(A.) No-arbitrage pricing: Let Q be the set of local equivalent martingale measures. (Only if
markets are complete Q is a singleton, i.e., Q = {Q}.) Then, the superhedging price πL

of a contract with L ≥ 1 exercise rights and associated payoff
∑L

l=1Hτl is given by

πL = sup
τ1<τ2<···<τL

sup
Q∈Q

EQ

[
L∑
l=1

Hτl

]
.
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Many different approaches to no-arbitrage pricing have been proposed in the literature;
see, e.g., the good-deal bounds of Cochrane and Saá-Requejo [31], Hansen and Jagan-
nathan [43] and Björk and Slinko [20], or the acceptable opportunities of Carr, Geman
and Madan [26]. All these approaches yield prices of the form

π̃L = sup
τ1<τ2<···<τL

sup
Q∈Qrestricted

EQ

[
L∑
l=1

Hτl

]
,

where Qrestricted ⊂ Q.

Prototypical situations leading to single and multiple stopping problems in economics
and finance are the pricing and exercising of American-style, Bermudan-style, and swing
options. American options give the holder the right to exercise the option (once) on
any preferred trading day before expiration. Different from American options, Bermudan
options prescribe a set of trading days on which the option can be exercised (once).
Swing options, more generally, give the holder the right to exercise the option multiple
times, at a pre-specified set of exercise dates. With L ≥ 1 exercise rights, exercised at
τ1 < τ2 < · · · < τL, the payoff equals

∑L
l=1Hτl for a cash-flow process H ∈ H. Swing

options are particularly popular in energy markets to manage the risk of fluctuations in
oil, gas, or electricity prices.

(B.) Indifference valuation—the seller’s perspective: Suppose that the seller of a contract has
a max-min utility functional of the form

U(H) = inf
Q∈Q

EQ[H],

for a family of probabilistic models (i.e., priors) Q and adopts a utility indifference valua-
tion approach (Carmona [25], Laeven and Stadje [52]). Then, the value V L of a contract
with L ≥ 1 exercise rights and associated payoff

∑L
l=1Hτl is determined from the indif-

ference relation

U(0) = inf
τ1<τ2<···<τL

U

(
−

L∑
l=1

Hτl + V L

)
= inf

τ1<τ2<···<τL
inf
Q∈Q

EQ

[
−

L∑
l=1

Hτl + V L

]
.

Hence,

V L = sup
τ1<τ2<···<τL

sup
Q∈Q

EQ

[
L∑
l=1

Hτl

]
.

(C.) Robust risk measurement: Suppose that ρ is a robust, or worst case, expectation, that
is,

ρ(H) = sup
Q∈Q

EQ[H], (2.6)

for a family of probabilistic models Q. In financial risk measurement, (2.6) is referred to
as a coherent risk measure and Q as a set of generalized scenarios (Artzner et al. [2] and
Föllmer and Schied [38]); see also Ben-Tal and Nemirovski [18] for the intimately con-
nected robust optimization paradigm. It determines the minimal amount of risk capital
required to be added to the financial position H to make it ‘safe’ from the viewpoint of the
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regulatory authority. Applications of coherent risk measures and generalized scenarios
to decision and optimization include Lesnevski, Nelson and Staum [53], Bertsimas and
Brown [19], Choi, Ruszczyński and Zhao [29], Philpott, de Matos and Finardi [62] and
Tekaya, Shapiro, Soares and da Costa [77]. Assume now that Hτl is a payout obligation
(i.e., liability) at time τl, where τl is a stopping time, due to e.g., a flexible interest rate
cap in interest rate markets or a partial surrender option in life insurance to be paid
to a policyholder who decides to partially surrender his insurance contract. Then, the
required amount of risk capital due to L ≥ 1 stopping rights is given by

sup
τ1<τ2<···<τL

ρ

(
L∑
l=1

Hτl

)
= sup

τ1<τ2<···<τL
sup
Q∈Q

EQ

[
L∑
l=1

Hτl

]
.

3 Pathwise Duality

3.1 Pathwise Dual Representation

The following theorem establishes our pathwise (i.e., almost sure) additive dual representation
for general multiple stopping problems of the form (2.2).

Theorem 3.1 Suppose ρ satisfies (C1)–(C4) and is subadditive (P1). Then, for any adapted
process H = (Ht)t∈{0,...,T} ∈ H and each fixed t ∈ {0, . . . , T},

(i) we have the dual representation

Y ∗,Lt = inf
M(1),...,M(L)∈Mρ

0

ρt

(
max

t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M

(k)
jk−1
−M (k)

jk

))
; (3.1)

(ii) the dual representation’s infimum is attained:

Y ∗,Lt = ρt

(
max

t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M∗,L−k+1

jk−1
−M∗,L−k+1

jk

))
; (3.2)

(iii) if in addition ρ is sensitive (P2), we have the pathwise dual representation

Y ∗,Lt = max
t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M∗,L−k+1

jk−1
−M∗,L−k+1

jk

)
, almost surely; (3.3)

where the ρ-martingales M∗,L−k+1 satisfy

M∗,L−k+1
r+1 −M∗,L−k+1

r = Y ∗,L−k+1
r+1 − ρr

(
Y ∗,L−k+1
r+1

)
, (3.4)

and Y ∗,L−k+1 is the upper Snell envelope due to L−k+1 exercise rights, satisfying the Bellman
principle,

Y ∗,L−k+1
r = max

[
Hr + ρr

(
Y ∗,L−kr+1

)
, ρr

(
Y ∗,L−k+1
r+1

)]
. (3.5)

8



Already when L ≡ 1, Theorem 3.1 is new and of significant independent interest. In this
case it simplifies to:

Corollary 3.2 Suppose ρ satisfies (C1)–(C4) and (P1). Then, for any adapted process H ∈ H
and each fixed t ∈ {0, . . . , T}, we have the dual representation

Y ∗t = inf
M∈Mρ

0

ρt

(
max
t≤j≤T

(Hj +Mt −Mj)

)
(3.6)

= ρt

(
max
t≤j≤T

(
Hj +M∗t −M∗j

))
, (3.7)

where M∗ is the ρ-Doob martingale in Eqn. (2.4). If in addition ρ is sensitive (P2), we have
the almost sure property:

Y ∗t = max
t≤j≤T

(
Hj +M∗t −M∗j

)
, almost surely. (3.8)

Remark 3.3 We note that the single stopping problem also admits an alternative but non-
pathwise additive dual representation for functionals ρ satisfying (C1)–(C4); see Proposition A.2
in the Appendix. In Theorem 3.1 and Corollary 3.2, the subadditivity property (P1) of ρ is re-
quired, and exploited through application of Lemma B.1 in the proof of Theorem 3.1. A dual
representation theorem in the spirit of Theorem 3.1 and Corollary 3.2 without assuming (P1)
seems not possible to us.

3.2 Surely Optimal ρ-Martingales

The ρ-Doob martingale in Eqn. (2.4) plays a special role in the set of ρ-martingales Mρ
0 as

its appearance in Corollary 3.2, Eqn. (3.7) (and indirect appearance in Theorem 3.1, (ii))
confirms. In our numerically implementable method developed and applied in Sections 4–6
we rely on the ρ-Doob martingale. From a theoretical perspective, however, and as a general
justification of our pathwise dual, martingale-based approach, we develop in this section several
results on so-called surely optimal ρ-martingales. To achieve this, we generalize the concept of
standard surely optimal martingales (see Schoenmakers, Zhang and Huang [72] in the context
of standard conditional expectations and optimal single stopping problems) to subadditive
DMU functionals. The results in this section show formally that if a general ρ-martingale—
not necessarily the ρ-Doob martingale—induces ‘small’ (robust) variance, then the associated
bounds obtained from the dual representation can be expected to be ‘tight’ and nearly constant.

Our results on surely optimal ρ-martingales can also serve as a diagnostic device to assess
the quality of the estimated ρ-Doob martingale, derived from an (input) approximation to the
upper Snell envelope. If the (robust) variance the estimate induces fails to be small, then it
must be far from the ρ-Doob martingale. If, on the other hand, this variance is small, then the
estimate will be close to an optimal ρ-martingale (attaining the dual representation’s infimum),
even though not necessarily close to the ρ-Doob martingale.

For ease of exposition, we focus attention first on optimal single stopping problems. The
next theorem generalizes the analogous key measurability result for standard conditional ex-
pectations and optimal single stopping problems to DMU functionals satisfying (C1)–(C4) and
(P1).
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Theorem 3.4 Let Y ∗i be the upper Snell envelope of the cash-flow process H with respect to a
subadditive DMU functional ρ satisfying (C1)–(C4) and (P1) as in Corollary 3.2 and let M be
a ρ-martingale. Then, for any i ∈ {0, . . . , T},

max
i≤j≤T

(Hj −Mj +Mi) ∈ Fi ⇒ max
i≤j≤T

(Hj −Mj +Mi) = Y ∗i .

The following lemma will later allow for a generalization of the results in this section to
multiple stopping.

Lemma 3.5 Let Y ∗, H, M and ρ be as in Theorem 3.4. Then, for any fixed 0 ≤ i < T ,

θi+ := max
i<j≤T

(Hj −Mj +Mi) ∈ Fi ⇒

(i) θi+ = ρi
(
Y ∗i+1

)
and (ii) Mi+1 −Mi = Y ∗i+1 − ρi

(
Y ∗i+1

)
,

hence Mi+1 −Mi is a ρ-Doob martingale increment. (Note the strict first inequality under the
max operator.) Thus, in particular, if θi+ ∈ Fi for every 0 ≤ i < T, then M is the ρ-Doob
martingale.

Let us define the conditional ρ-variance as follows:

Varρi (X) := ρi

(
(X − ρi (X))2

)
. (3.9)

It admits a conditional Chebyshev inequality, exploited in the proof of Theorem 3.8 below, as
follows:

Proposition 3.6 Assume (C1)–(C4). If ρ is positively homogeneous (P3), then

ρi
(
1|X−ρi(X)|≥ε

)
≤ Varρi (X)

ε2
. (3.10)

Next, we state the following lemma:

Lemma 3.7 Assume (C1)–(C4). Let ρ be subadditive (P1) and sensitive (P2). Then,

Varρi (X) = 0⇐⇒ X ∈ Fi.

By virtue of Lemma 3.7, Theorem 3.4 implies that if a ρ-martingale M is such that, for
some i ≤ j ≤ T , the conditional ρ-variance

Varρi (θi(M)) := Varρi

(
max
i≤j≤T

(Hj −Mj +Mi)

)
is zero a.s., then θi(M) = Y ∗i a.s. In that case, we say that the ρ-martingale M is surely optimal
at i. (Note that, in particular, the ρ-Doob martingale in (2.4) is surely optimal.)

We then present a stability result for ρ-martingales M that are, in loose terms, ‘close’ to be
surely optimal, in the sense that the conditional ρ-variance Varρi(θi(M)) is ‘small’. In partic-
ular, for a sequence of ρ-martingales (M (n))n≥1 that induces vanishing conditional ρ-variance,
we establish weak conditions guaranteeing that the corresponding upper bounds converge to
the upper Snell envelope (in L1), even though the sequence of ρ-martingales (M (n))n≥1 itself
does not necessarily converge.
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Theorem 3.8 Assume (C1)–(C4). Let ρ be subadditive (P1) and positively homogeneous (P3).
Suppose that

Varρi

(
θ

(n)
i

)
P→ 0, with θ

(n)
i = max

i≤j≤T

(
Hj −M (n)

j +M
(n)
i

)
.

If, in addition, for every i and every ε > 0 there exists Kε > 0 such that

sup
n≥1

E
[
ρi

(∣∣∣M (n)
i

∣∣∣ 1∣∣∣M(n)
i

∣∣∣>Kε
)]

< ε, (3.11)

then
ρi

(
θ

(n)
i

)
L1−→ Y ∗i .

Note that, if ρi ≡ Ei, (3.11) boils down to a standard uniform integrability condition. More
generally, we have the following:

Proposition 3.9 Assume (C1)–(C4). Let ρ be subadditive (P1) and positively homogeneous
(P3). If, for some η > 0,

sup
n≥1

E
[
ρi

(∣∣∣M (n)
i

∣∣∣1+η
)]

<∞,

then
(
M

(n)
i

)
n≥1

satisfies (3.11).

Under an additional Lipschitz continuity condition, Theorem 3.8 may be readily applied as
follows. Let us assume that, for some number p,

E [|ρi (Z)|p] ≤ CpE [|Z|p] , (3.12)

with Cp > 0. In particular, if (3.12) holds for p = 1, one obviously has

E [Varρi (X)] := E
[
ρi

(
(X − ρi (X))2

)]
≤ C1Ṽari (X) , (3.13)

where Ṽari(X) := EFi
[
(X − ρi (X))2

]
. That is, if we achieve in an algorithm that Ṽari

(
θ

(n)
i

)
P→

0, and the
(
M

(n)
i

)
n≥1

are standard uniformly integrable, i.e.,

sup
n≥1

E
[∣∣∣M (n)

i

∣∣∣ 1∣∣∣M(n)
i

∣∣∣>Kε
]
< ε,

then on the one hand,

sup
n≥1

E
[
ρi

(∣∣∣M (n)
i

∣∣∣ 1∣∣∣M(n)
i

∣∣∣>Kε
)]
≤ C1 sup

n≥1
E
[
Ei
∣∣∣M (n)

i

∣∣∣ 1∣∣∣M(n)
i

∣∣∣>Kε
]

= C1 sup
n≥1

E
[∣∣∣M (n)

i

∣∣∣ 1∣∣∣M(n)
i

∣∣∣>Kε
]
< ε,

i.e., the
(
M

(n)
i

)
n≥1

satisfy the notion of ρi-uniform integrability, and on the other hand we

have due to (3.13) that

Varρi

(
θ

(n)
i

)
P→ 0.
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Then, Theorem 3.8 implies that

ρi

(
θ

(n)
i

)
L1→ Y ∗i .

The next theorem generalizes Theorem 3.4 and Lemma 3.5 to multiple stopping:

Theorem 3.10 Assume (C1)–(C4) and (P1). Let us define for a set of ρ-martingales M (k),
k = 1, . . . , L,

Θq
i+ := max

i<j1<j2<···<jq

q∑
k=1

(
Hjk +M

(q−k+1)
jk−1

−M (q−k+1)
jk

)
for q = 1, . . . , L,

with j0 := i. (Note the strict first inequality under the max operator.) Then it holds that

Θq
i+ ∈ Fi for q = 1, . . . , L, 0 ≤ i < T =⇒{

(i) Θq
i+ = ρi

(
Y ∗,qi+1

)
(ii) M

(q)
i+1 −M

(q)
i = Y ∗,qi+1 − ρi

(
Y ∗,qi+1

) for q = 1, . . . , L, 0 ≤ i < T.

Remark 3.11 Without doubt it is also possible to derive a version of Theorem 3.8 for the
multiple stopping setting. However, as our algorithm in Section 4 below aims at approximative
construction of ρ-Doob martingale increments associated with the upper Snell envelopes Y ∗,l of
the generalized cash-flows

U∗,lj := Hj + ρj

(
Y ∗,l−1
j+1

)
, l = 1, . . . , L, (3.14)

respectively, rather than approximative construction of merely surely optimal ρ-martingales, we
refrain from such an analysis.

4 A General Primal-Dual Pseudo Algorithm

In this section, we develop a primal-dual pseudo algorithm for robust multiple stopping (hence-
forth called algorithm for short). Our treatment in this section applies to DMUs satisfying
(C1)–(C4), (P1) and weak continuity conditions, and to general reward processes in a Marko-
vian environment; in particular, our treatment in this section is not restricted to g-expectations.
The following lemma will serve as a cornerstone in our construction.

Lemma 4.1 Let ρ satisfy (C1)–(C4), (P1) and be Lipschitz continuous in the sense of (3.12)
for p = 2. Furthermore, let CN , C,U ∈ Fj, Y ∈ Fj+1, and let mN ∈ Fj+1 be a ρ-martingale
increment, that is, ρj

(
mN
)

= 0, for j = 0, . . . , T , N ∈ N, such that

E
[(
Y −mN − CN

)2]→ 0, and (4.1)

E
[(
CN − C

)2]→ 0, for N →∞.

Then,

C = ρj (Y) and mN L2→ Y − ρj (Y) .
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Corollary 4.2 Let Y l
j+1 be an already constructed approximation to a random variable Y ∗,lj+1.

Furthermore, let ρ, the ρ-martingale increment ml,N
j+1 ∈ Fj+1, and Cl,Nj , Clj ∈ Fj be as in

Lemma 4.1, such that

E
[(
Y l
j+1 −ml,N

j+1 − C
l,N
j

)2
]
→ 0, and E

[(
Cl,Nj − Clj

)2
]
→ 0, for N →∞.

Then,

Y l
j+1 −ml,N

j+1
L2→ ρj

(
Y l
j+1

)
.

Guided by Lemma 4.1 and Corollary 4.2, we now develop a primal-dual algorithm in the
context of a Markovian underlying process X with state space Rd, possibly in continuous time,
that is monitored at the exercise dates as Xj , j = 0, . . . , T . As usual, we assume that Fj is
the σ-field generated (directly or, as in the next section, indirectly) by the process X up to
exercise date j. Furthermore, we assume that the cash-flows are of the form

Hj = fj(Xj), for j = 0, . . . , T,

where fj : Rd → R≥0, j = 0, . . . , T , are given nonnegative payoff functions such that H ∈ H.
Note that, due to the Bellman principle (3.5), Y ∗,l can be seen as the upper Snell envelope
corresponding to the generalized cash-flow

U∗,lj := Hj + ρj

(
Y ∗,l−1
j+1

)
=: Hj + c∗,lj (Xj), l = 1, . . . , L, j = 0, . . . , T − 1, (4.2)

due to a single exercise right, where the so-called continuation functions c∗,lj exist by Marko-
vianity. We also assume to have a set of Monte Carlo simulated training trajectories

X(n) ≡ Xn, n = 1, . . . , N.

We proceed in the following steps:

1. Initialize M
0

= Y
0

= c0 = 0, for l = 0.

2. Suppose that, for a particular l with 0 ≤ l < L:
(i) we have constructed a set of (approximate) continuation functions clj : Rd → R≥0,
1 ≤ j ≤ T , hence an (approximate) continuation value process (for up to l exercise times)
of the form

C
l
j = clj(Xj);

(ii) we have constructed a (true) ρ-martingale M
l
j ; and

(iii) we have constructed, on each trajectory n, a path

Y
l,n
j := max

[
U
l,n
j , clj(X

n
j )
]

if j ∈ {0, 1, . . . , T}, where (4.3)

U
l,n
j :=

{
fj(X

n
j ) + cl−1

j (Xn
j ) if l > 0

0 if l = 0
, 0 ≤ j ≤ T, (4.4)

as an approximation to Y ∗,l,n.
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3. Now construct, using these trajectories, a subsequent (true) ρ-martingale M
l+1

, a sub-
sequent set of continuation functions cl+1

j , j = 0, . . . , T , and subsequent trajectories

Y
l+1,n

, n = 1, . . . , N (as approximations to M∗,l+1 and Y ∗,l+1, respectively) such that
(4.3) holds for l + 1. To this end, we carry out the following backward procedure, or
“backward subroutine”, at level l + 1:

– As initialization, set Y
l+1
T = HT , c

l+1
T = 0. (We also set c0

T = 0.)

– Suppose that, for 0 < j + 1 ≤ T , the values Y
l+1,n
j+1 , n = 1, . . . , N , the set of ρ-

martingale increments
(
M

l+1
r −M l+1

j+1

)
j+1<r≤T

(which is empty if j + 1 = T ), and

the continuation function cl+1
j+1 have been constructed.

– Then construct, according to the regression subroutine in Section 4.1 below, a con-
tinuation function cl+1

j , a ρ-martingale increment ml+1
j+1 ∈ Fj+1 with ρj(m

l+1
j+1) = 0,

and set
(
M

l+1
r −M l+1

j

)
=
(
M

l+1
r −M l+1

j+1 + ml+1
j+1

)
, for

Y
l+1,n
j = max

[
U
l+1,n
j , cl+1

j (Xn
j )
]
, with (4.5)

U
l+1,n
j = fj(X

n
j ) + clj(X

n
j ), and n = 1, . . . , N.

Proceeding this way:

(a.) Working forward from l = 0, . . . , L thus yields a family of continuation functions cl and

a family of (true) ρ-martingales M
l
, respectively:

clj(·), and M
l
j :=

j∑
r=1

ml
r, l = 1, . . . , L, j = 0, . . . , T.

(b.) An upper bound for the solution to the robust multiple stopping problem at t = 0 due
to L exercise rights is now given by (cf. Theorem 3.1, (ii)):

Y upp,L
0 := ρ0

(
max

0≤j1<j2<···<jL

L∑
l=1

(
fjl(Xjl)−M

L−l+1
jl

+M
L−l+1
jl−1

))
, (4.6)

which needs to be estimated by a separate (Monte Carlo) procedure.

(c.) A lower bound for the solution to the robust multiple stopping problem at t = 0 due to
L exercise rights may next be obtained from the family of stopping times

τ l := min
{
j : τ l−1 < j ≤ T, fj(Xj) + cl−1

j (Xj) ≥ clj(Xj)
}
, (4.7)

via a (Monte Carlo) estimation of:

Y low,L
0 := ρ0

(
L∑
l=1

fτ l(Xτ l)

)
. (4.8)
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4.1 Regression Subroutine

Let there be given a collection of ‘elementary’ ρ-martingale increments Eβj (X), with β =

(β1, . . . , βK′) ∈ RK′ and K ′ ∈ N, that is,

ρj

(
Eβj (X)

)
= 0, j = 0, . . . , T − 1,

and a collection of basis functions ψ1, . . . , ψK′′ : Rd → R. We assume that the set of ρ-
martingale increments {

E(β1,...,βK′ )
j (X)

}
,

is L2-dense among the Fj+1-measurable square-integrable random variables Ej such that ρj(Ej) =
0. We then solve, in view of Lemma 4.1 and Corollary 4.2, for fixed N and K ′ and K ′′ the
least squares problem

MSE :=
N∑
n=1

(
Y l+1,n
j+1 − Eβj (X)−

K′′∑
k=1

γkψk(X
n
j )

)2

=
N∑
n=1

(
Y l+1,n
j+1 − Eβj (X)− γψ(Xn

j )
)2

−→ arg minβ∈RK′ ,γ∈RK′′ =:
[
βl+1,j,K′,N , γl+1,j,K′′,N

]
, (4.9)

where we used vector notation γ = (γ1, . . . , γK′′) and ψ = (ψ1, . . . , ψK′′)
ᵀ
. For the algorithm

to converge, it is actually sufficient that the MSE above converges to zero as K ′,K ′′ →∞ for
our choice of β and γ. We will suppress the superscripts K ′,K ′′ and N whenever there is no
ambiguity. We set

ml+1
j+1 := ml+1

j+1(X) := Eβ
l+1,j

j (X), cl+1
j (·) :=

K′′∑
k=1

γl+1,j
k ψk(·).

4.2 Convergence Theorem

We state the following theorem:

Theorem 4.3 Let ρ be subadditive (P1) and Lipschitz continuous in the sense of (3.12) for

p = 2. We set K = min {K ′,K ′′} and denote by M
l,K,N
j := M

l,K,N
j (Xj) := M

l
j, c

l,K,N
j :=

cl,K,Nj (Xj) := clj and Y
l,K,N
j := Y

l,K,N
j (Xj) := Y

l,N
j the functions constructed in the algorithm

above. Then,

lim
K→∞

lim
N→∞

M
l,K,N
j = M∗,lj in L2, (4.10)

lim
K→∞

lim
N→∞

cl,K,Nj = c∗,lj in L2, (4.11)

lim
K→∞

lim
N→∞

Y
l,K,N
j = Y ∗,lj in L2, (4.12)

for all j = T, T − 1, . . . , 0 and l = 1, . . . , L. Furthermore,∣∣∣Y ∗,lj −ρj
(

max
j≤r≤T

(
U
l
r −M

l
r

))∣∣∣∣ ≤ ρj ( max
j≤r≤T

∣∣∣M∗,lr −M l
r

∣∣∣)+ ρj

(
max
j≤r≤T

∣∣∣cl−1
r − c∗,l−1

r

∣∣∣)
−→K→∞,N→∞ 0.
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4.3 Complexity

At first sight, the path-wise maximum in (4.6) would require the evaluation of T !/(L!(T −L)!)
terms. Fortunately, due to following proposition, it only requires O(LT ) evaluations.

Proposition 4.4 Define, for 1 ≤ q ≤ L and 0 ≤ i ≤ T,

Θq
i := max

i≤j1<j2<···<jq

q∑
l=1

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1

)
, with j0 = i,

and naturally Θq
i = 0, i > T . Then,

Θq
i = max

[
fi(Xi) +M

q−1
i −M q−1

i+1 + Θq−1
i+1 ,M

q
i −M

q
i+1 + Θq

i+1

]
. (4.13)

Thus, the evaluation of (4.6) may be described as follows:

Recursive evaluation of (4.6)

1. Initialize Θ0
i = 0, for i = 0, . . . , T ;

2. Suppose that, for 0 ≤ q − 1 < L and for i = 0, . . . , T , the construction of Θq−1
i has been

conducted;

3. Backward subroutine: Initialize Θq
T = fT (XT ). When Θq

i+1 has been constructed for
i+ 1 ≤ T , compute Θq

i via (4.13).

5 Explicit Construction in a Brownian-Poisson Filtration

In the sequel, we assume that we have a completed continuous-time filtration F = (Ft)t∈[0,T ]

on a filtered probability space (Ω,F ,F,P) generated by a d1-dimensional standard (i.e., zero
mean and unit variance) Brownian motion W = (W1, . . . ,Wd1)

ᵀ
and a d2-dimensional Poisson

process N = (N1, . . . , Nd2)
ᵀ

with arrival intensity λP = (λ1
P, . . . , λ

d2
P )
ᵀ
. As usual, we define the

compensated counterpart of N as Ñt = Nt − λPt. The components of the processes W and
N are assumed to be independent. The stochastic drivers W and N generate the underlying
Markovian adapted reward process (Xt)t∈[0,T ] with state space Rd of Section 4.

Furthermore, we assume that ρ satisfies (the continuous-time analogs of) (C1)–(C4) and
(P1)–(P3). This means, in particular, that ρ is a coherent risk measure. By classical duality
results (e.g., Föllmer and Schied [38]), the robust multiple stopping problem at time t is then
given by

Y ∗,Lt = sup
t≤τ1<···<τL

(τ1,...,τL)∈Tt(L)

ρt

(
L∑
l=1

Hτl

)
= sup

t≤τ1<···<τL
(τ1,...,τL)∈Tt(L)

sup
Q∈Q

EQ

[
L∑
l=1

Hτl

∣∣∣Ft] , 0 ≤ t ≤ T, (5.1)

with Tt(L) our family of stopping vectors, and Q a closed convex set of probability mea-
sures absolutely continuous with respect to P and satisfying a stability assumption. In such a
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continuous-time setting, it is known that every recursive coherent risk measure can be iden-
tified with a solution to a backwards stochastic differential equation (BSDE) also called a
g-expectation, modulo a compactness assumption; see Section 5.1 for the precise definitions
and results. Exploiting our algorithm presented in Section 4, this section constructs explicit
upper and lower bounds to Y ∗,L with desirable properties.

5.1 Bellman’s Principle, the Set of Priors, and BSDE drivers

A probability measure change from P to an absolutely continuous measure Q ∈ Q admits
an explicit representation in our Brownian-Poisson setting. Consider the Radon-Nikodym
derivative

Dt := E
[
dQ
dP
|Ft
]
, t ∈ [0, T ].

As is well-known, Dt has the Doléans-Dade exponential form

Dt = exp

(∫ t

0
qsdWs +

∫ t

0
log

(
λs
λP

)
dNs −

∫ t

0

(
|qs|2

2
+ λs − λP

)
ds

)
, (5.2)

where q is a predictable, Rd1-valued, stochastic drift, and λ is a positive, predictable, Rd2-valued

process with λs
λP

:= (λ
1
s

λ1P
, . . . , λ

d2
s

λ
d2
P

)
ᵀ
, which jointly uniquely characterize Q. From Girsanov’s

theorem, we know that WQ
t := Wt−

∫ t
0 qsds is a standard Brownian motion under Q while the

process Nt has arrival intensity λt. In particular, the reference model P corresponds to q ≡ 0
and λ ≡ λP. The stochastic drift q may be given the interpretation of a drift in the diffusive
component that is misspecified to be absent by the reference model P. Similarly, λs − λP
represents a deviation from the misspecified arrival intensity λP under P.

In our dynamic setting, with DMU evaluations satisfying the continuous-time analogs of
(C1)–(C4) and (P1)–(P3), time-consistency of choice under uncertainty is satisfied as it is
equivalent to recursiveness or Bellman’s dynamic programming principle. Time-consistency of
a dynamic evaluation (ρt(H))t∈[0,T ] requires—according to its usual definition, also referred to
as ‘strong’ time-consistency—that ρs(H1) ≥ ρs(H2) whenever ρt(H1) ≥ ρt(H2), t ≥ s. That is,
if H2 is preferred over H1, in each state of nature at time t, then the same preference necessarily
applies prior to time t; see e.g., Riedel [64], Ruszczyński and Shapiro [68], Shapiro, Dentcheva
and Ruszczyński [73], Chapter 6, Ruszczyński [69] and Shapiro [74]. Indeed, requiring recursive-
ness or Bellman’s dynamic programming principle is equivalent to requiring time-consistency
for ρt(H) = sup{Q∼P|Q=P on Ft} EQ[H|Ft], t ∈ [0, T ], which is, in turn, equivalent to the set of
priors Q being m-stable; see Delbaen [33]. More formally, the following statements are equiva-
lent (see Lemma 11.11 of Föllmer and Schied [38] for the equivalence (i)–(ii), Delbaen [33] and
Delbaen, Peng and Rosazza Gianin [34] for (ii)–(iii) in a Brownian setting, and Tang and Wei
[76] and Laeven and Stadje [52] for (ii)–(iii) in a general semi-martingale setting):

(i) ρ is recursive, i.e., ρ satisfies Bellman’s dynamic programming principle ρ0(ρt(H)IA) =
ρ0(HIA) for every t ∈ [0, T ], A ∈ Ft, and bounded H.

(ii) ρ is time-consistent over bounded rewards.

(iii) There exists a closed, convex, set-valued predictable mapping C taking values in Rd1 ×
(−λ1

P,∞)× · · · × (−λd2P ,∞) such that

ρt(H) = sup
(q,λ)∈C

EQ [H|Ft] , t ∈ [0, T ].
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As in our continuous-time Brownian-Poisson setting recursiveness (C3) is equivalent to (iii),
we assume henceforth:

(A1) C = (Ct)t∈[0,T ] ⊂ [0, T ]×Rd1 × (−λ1
P + ε,∞)×· · ·× (−λd2P + ε,∞) with ε > 0 is compact.

We note that (A1) also implies that ρ is recursive and time-consistent over square-integrable
rewards.

For t ∈ [0, T ], z ∈ R1×d1 and z̃ ∈ R1×d2 , and C satisfying Assumption (A1), let us define a
function g via Fenchel’s duality:

g(t, z, z̃) := sup
(q,λ−λP)∈Ct

{zq + z̃(λ− λP)}. (5.3)

One easily verifies that g is convex, positively homogeneous and Lipschitz continuous. Then,
from Krätschmer et al. [50], we have the following statement, which is essentially (with (A1))
equivalent to (i)–(iii) above:

(iv) For every H ∈ L2(Fj+1), there exists a unique square-integrable predictable (Z, Z̃) such
that

dρt(Hj+1) = −g(t, Zt, Z̃t)dt+ ZtdWt + Z̃tdÑt, for t ∈ [j, j + 1], j ∈ {0, . . . , T − 1}.

In particular, there exists a unique square-integrable predictable (Z∗, Z̃∗) such that

dρt(Y
∗
j+1) = −g(t, Z∗t , Z̃

∗
t )dt+ Z∗t dWt + Z̃∗t dÑt, for t ∈ [j, j + 1], j ∈ {0, . . . , T − 1}. (5.4)

Furthermore, for t ∈ [0, T ], the (Z∗, Z̃∗) in (5.4) recover—and later allow to practically
compute—the ρ-Doob martingale as follows (cf. Eqns. (2.4)–(2.5)):

M∗t = ρt(M
∗
T ) = −

∫ t

0
g(s, Z∗s , Z̃

∗
s )ds+

∫ t

0
Z∗s dWs +

∫ t

0
Z̃∗s dÑs. (5.5)

Here, j = 0, . . . , L−1 should be interpreted as exercise dates and t ∈ [j, j+1] as the continuous
embedding.

Because ρj+1(Y ∗j+1) = Y ∗j+1, by (iv), for t ∈ [j, j + 1],

ρt(Y
∗
j+1) = Y ∗j+1 +

∫ j+1

t
g(s, Z∗s , Z̃

∗
s )ds−

∫ j+1

t
Z∗sdWs −

∫ j+1

t
Z̃∗sdÑs. (5.6)

Eqn. (5.4) is referred to as a backward stochastic differential equation (BSDE). Formally, given
a terminal payoff H ∈ L2 and a function g : [0, T ]×Rd1 ×Rd2 → R, referred to as a driver, the
solution to the corresponding BSDE is a triple of square-integrable and suitably measurable
processes (Y, Z, Z̃) that satisfies

dYt = −g(t, Zt, Z̃t)dt+ ZtdWt + Z̃tdÑt, and YT = H.

The solution is often referred to as a (conditional) g-expectation; see, e.g., Peng [61].
As a means of illustrating the generality of our setup given by (5.1) with (A1) we provide

a few examples.
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Example 5.1 (1.) Ball scenarios: Consider a decision-maker endowed with a set of priors
constituting a small ball environment surrounding P all deemed equally plausible. Then,

Q =
{
Q(q,λ) � P

∣∣∣|qt| ≤ δ1, |λt − λP| ≤ δ2, for Lebesgue-a.s. all t
}
, δ1, δ2 > 0,

and Ct =
{

(q, λ)
∣∣|q| ≤ δ1, |λ−λP| ≤ δ2

}
. Suppose without losing generality that |λP| ≥ δ2.

Then, from (5.3), in explicit form, g(t, z, z̃) = δ1|z|+ δ2|z̃|.

(2.) Discrete scenarios: Imagine a decision-maker who considers, at each time t > 0, finite-
dimensional families {q1,t, . . . , qm,t} and {λ1,t, . . . , λm,t}, m ∈ N, with all elements deemed
equally plausible. Then,

Q =
{
Q(q,λ) � P

∣∣∣(qt, λt) ∈ {(qi,t, λj,t), i, j ∈ {1, . . . ,m}}, for Lebesgue-a.s. all t
}
,

and Ct =
{

(q, λ)
∣∣(q, λ) ∈ conv ({(qi,t, λj,t), i, j ∈ {1, . . . ,m}})

}
, with conv(·) the convex

hull. We can assume that 0 ∈ conv ({(qi,t, λj,t), i, j ∈ {1, . . . ,m}}) without losing gener-
ality, upon redefining the reference measure. Furthermore, g(t, z, z̃) = maxi=1,...,m qi,tz +
maxj=1,...,m λj,tz̃.

To obtain genuine upper and lower bounds to the optimal solution of the stopping problem
(5.1), we henceforth impose the following additional assumption:

(A2) Ht = ft(Xt) and we can simulate i.i.d. copies of (Xt)t∈[0,T ].

Once, we have constructed a ‘good’ family of ρ-martingales M , we are faced with the
computation of Y upp,L

0 in (4.6). An important advantage of this dual approach for numerical
stability is that we have, in fact, the pathwise dual representation

Y ∗,L0 := max
0≤j1<j2<···<jL

L∑
l=1

(
fjl(Xjl)−M

∗,L−l+1
jl

+M∗,L−l+1
jl−1

)
, almost surely.

Indeed, we will obtain an estimate with ‘low’ variance provided the ρ-martingale M is ‘good’.
Furthermore, to obtain a lower bound we employ Y low,L

0 in (4.8). By the results discussed in
this subsection, for a square-integrable payoff U , ρ has a representation of the form

ρt(U) = sup
(q,λ)∈C

EQ(q,λ)

[
U
∣∣Ft] (5.7)

= U +

∫ T

t
g(s,Zs, Z̃s)ds−

∫ T

t
ZsdWs −

∫ T

t
Z̃sdÑs. (5.8)

Let us now first consider the question of how to explicitly obtain a ‘good’ family of ρ-martingales
M in our Brownian-Poisson filtration with (C1)–(C4), (P1)–(P3) and (A1)–(A2). Next, we
develop in Sections 5.3 and 5.4 explicit genuine lower and upper bounds.
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5.2 Parameterization of the ρ-Martingale Increments

As in Section 4, we assume that (Xj)0≤j≤T is an Fj-adapted d-dimensional underlying Marko-
vian process, now in a Brownian-Poisson filtration, and that our cash-flow process has a struc-
ture of the form Hj = fj(Xj), j = 0, . . . , T such that H ∈ H. We further assume that the
resulting random variables Hj are square integrable.

We are going to construct a ρ-martingale backwardly. To this end, we consider, between
two exercise dates j and j + 1, the (fine) grid πj = {s(j−1)n0

= j, sj1, . . . , sjn0 = j + 1}, where

sjp = j + p∆ with ∆ = n−1
0 . We also define

Π := {s00 = 0, s01, . . . , s0n0 = 1, s11, . . . , s(T−2)n0
= T − 1, s(T−1)1, . . . , s(T−1)n0

= T},

and sometimes use the notation Π = {t0 = 0, t1, t2, . . . , tn1 = T}, where the ti are simply the
enumerated sjp. For our numerical schemes we always assume that Assumption (A2) is in
place, next to (A1). In particular, we can also simulate i.i.d. copies of the (Zsjp , Z̃sjp)sjp∈Π.

We formally initialize
(
M

l+1
j −M l+1

T

)
j≥T

= (0)T . Suppose that for some (fixed) j < T , an

approximation Y l+1
j+1 to the upper Snell envelope Y ∗,l+1

j+1 and the set of ρ-martingale increments(
M

l+1
q −M l+1

j+1

)
j+1≤q≤T

have been constructed. Then, we carry out the following loop. For

p = n0, we initialize 0 ≤ Un0 = Y l+1
j+1 ≈ ρj+1

(
Y ∗,l+1
j+1

)
. Now, if 0 ≤ Up+1, p < n0, has been

constructed, we solve the piecewise linear minimization problem

[
γN1
sjp , β

N1
sjp , β̃

N1
sjp

]
= arg min
γ,β,β̃∈RK1

1

N1

N1∑
n=1

(
Unp+1 −

K1∑
k=1

γkψk(sjp, X
n
sjp)

+ g
(
sjp,

K1∑
k=1

βkϕk(sjp, X
n
sjp),

K1∑
k=1

β̃kϕ̃k(sjp, X
n
sjp)
)

(sj(p+1) − sjp)

−
K1∑
k=1

βkϕk(sjp, X
n
sjp)∆W

n
sjp −

K1∑
k=1

β̃kϕ̃k(sjp, X
n
sjp)∆Ñ

n
sjp

)2

, (5.9)

for certain basis functions (ψk), (ϕk), and (ϕ̃k), K1 ∈ N, and N1 trajectories. Alternatively to
(5.9), we can solve

[
γN1
sjp , β

N1
sjp , β̃

N1
sjp

]
= arg min
γ,β,β̃∈RK1

1

N1

N1∑
n=1

(
Unp+1 −

K1∑
k=1

γkψk(sjp, X
n
sjp)

−
K1∑
k=1

βkϕk(sjp, X
n
sjp)∆W

n
sjp −

K1∑
k=1

β̃kϕ̃k(sjp, X
n
sjp)∆Ñ

n
sjp

)2

, (5.10)

which has a closed-form solution.

Remark 5.2 We note that in the case the filtration is generated by a one-dimensional process
(either a Brownian motion or a Poisson process), the minimization problem (5.9) corresponds
to a linear programming problem. This is seen as follows. As ρ is a coherent risk measure, it
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follows that g is positively homogeneous. Thus, there exist f+
sjp , f

−
sjp ≥ 0 such that g(sjp, z) =

f+
sjpz

+ + f−sjpz
−. Hence, the function

z 7→ h(sj(p+1), z)
2 :=

(
Unp+1 + g(sjp, z)(sj(p+1) − sjp)− (Wn

sj(p+1)
−Wn

sjp)z
)2

is convex as Unp+1 ≥ 0. (The reason is that h(sjp, ·) is linear on its negative part.) Thus, the
minimization problem (5.9) is convex. Because any piecewise linear function that is convex can
be written as a supremum of finitely many linear functions, the minimization problem can be
expressed as a linear programming problem.

Next, define

Cp(X
n
sjp) :=

K1∑
k=1

γN1
sjpk

ψk(sjp, X
n
sjp), Z l+1,N1

sjp (Xn
sjp) :=

K1∑
k=1

βN1
sjpk

ϕk(sjp, X
n
sjp),

and Z̃ l+1,N1
sjp (Xn

sjp) similarly. We set

Up(X
n
sjp) := max

(
Cp(X

n
sjp) + g(sjp,Z l+1,N1

sjp (Xn
sjp), Z̃

l+1,N1
sjp (Xn

sjp))(sj(p+1) − sjp), 0
)
.

We then obtain the desired ρ-martingale increments M
l+1,K1,N1

sjp −M l+1,K1,N1

j by defining

M
l+1,∆,K1,N1

sjp (Xn
sjp)−M

l+1,∆,K1,N1

j (Xn
sjp) ≡M

l+1,K1,N1

sjp (Xn
sjp)−M

l+1,K1,N1

j (Xn
sjp)

:= −
p−1∑
u=0

∫ sj(u+1)

sju

g(u,Z l+1,N1
sju (Xn

sju), Z̃ l+1,N1
sju (Xn

sju))du

+

p−1∑
u=0

Z l+1,N1
sju (Xn

sju)∆Wn
sju +

p−1∑
u=0

Z̃ l+1,N1
sju (Xn

sju)∆Ñn
sju . (5.11)

In the end, when we have arrived at p = 0, we define cl+1,K1,N1
j (·) := C0(·) and Y

l+1,K1,N1

j (·)
according to Eqn. (4.5). This way, we have recursively constructed the parameterized space of
ρ-martingale increments. The following proposition establishes convergence of our construction.

Proposition 5.3 The ρ-martingale increments constructed in (5.11) are dense in L2 and, in
particular,

lim
∆→0

lim
K1→∞

lim
N1→∞

M
l+1,∆,K1,N1

t = M∗,l+1
t .

We finally note that (5.11) gives rise to a true discrete-time ρ-martingale (M
l+1
j )j∈{0,1,2,...,T}.

The thus constructed (M
l+1
j )j∈{0,1,2,...,T} will be exploited to establish an upper bound to the

upper Snell envelope via (4.6), while (M
l+1
sjp )j,p (living on the finer grid Π) is needed for the

numerical approximation.
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5.3 Converging Genuine Lower Bound

This subsection develops an explicit lower bound that converges to the upper Snell envelope
asymptotically and constitutes a genuine (biased low) lower bound at the pre-limiting level.
Consider (5.8) with U =

∑L
l=1 fτ l(Xτ l) and τ l constructed by (4.7). From e.g., Barrieu and El

Karoui [4], we know that the supremum in (5.7) is attained in

dQg

dP
= D

(∫ T

0
HsdWs +

∫ T

0
H̃sdÑs

)
, with (Hs, H̃s) ∈ ∂g(s,Zs, Z̃s), (5.12)

where D denotes the Doleans-Dade exponential, and ∂g(s, ·) denotes the mapping of subd-
ifferentials of the convex driver g(s, ·). We shall exploit this to compute the lower bound
numerically. For simplicity, assume that g(s, ·) is differentiable. (If that is not satisfied, then
our approach may still be applied by considering elements in the subgradient.)

Let N2 ∈ N, simulate paths (Wn
sjp), (Nn

sjp) and (Xn
sjp) for n = 1, . . . , N2, and also consider

(the true, non-simulated) (Wsjp), (Nsjp) and (Xsjp). Then, define and construct

ZN2
t :=zN2

t (sjp, Xsjp) := βN2
sjpϕ(sjp, Xsjp) for sjp ≤ t < sj(p+1),

Z̃N2
t :=z̃N2

t (sjp, Xsjp) := β̃N2
sjpϕ̃(sjp, Xsjp) for sjp ≤ t < sj(p+1),

using least squares Monte Carlo regression as described in Section 5.2 with K2 basis functions
and terminal condition given by U =

∑L
l=1 fτ l(Xτ l). (Henceforth, we suppress K2 in the

notation.) Furthermore, define and construct, using N3 ∈ N new i.i.d. simulations,

ZN2,n
t :=zN2

t (sjp, X
n
sjp) := βN2

sjpϕ(sjp, X
n
sjp) for sjp ≤ t < sj(p+1), n = 1, . . . , N3,

Z̃N2,n
t :=z̃N2

t (sjp, X
n
sjp) := β̃N2

sjpϕ̃(sjp, X
n
sjp) for sjp ≤ t < sj(p+1), n = 1, . . . , N3,

and moreover the partial derivatives

qnsjp := gZ(sjp,ZN2,n
sjp , Z̃N2,n

sjp ), n = 1, . . . , N3,

λnsjp − λP := gZ̃(sjp,ZN2,n
sjp , Z̃N2,n

sjp ), n = 1, . . . , N3.

Next, define N3 i.i.d. simulations of the measure dQapprox

dP via the Radon-Nikodym derivative

Dn := exp

( ∑
0≤sjp

qnsjp∆W
n
jp +

∑
0≤sjp

log

(
λnsjp
λP

)
∆Nn

jp

−
∑

0≤sjp

(1

2
|qnsjp |

2 + λnsjp − λP
)

∆jp

)
, n = 1, . . . , N3.

Finally, set

Ỹ low,L
0 :=

1

N3

N3∑
n=1

Dn
L∑
l=1

fτ l,n(Xn
τ l,n), (5.13)

with fτ l,n(Xn
τ l,n

), n = 1, . . . , N3, simulated copies of fτ l(Xτ l) constructed by applying the
numerical scheme of Section 5.2.
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Recall from (4.8) that ρ0(U) gives a lower bound to the upper Snell envelope. Thus, it
follows from (5.7), (5.12), and the definition of U that

E
[
Ỹ low,L

0

]
= E

[
1

N3

N3∑
n=1

Dn
L∑
l=1

fτ l,n(Xn
τ l,n)

]

= EQapprox

[
L∑
l=1

fτ l(Xτ l)

]
≤ ρ0

(
L∑
l=1

fτ l(Xτ l)

)
≤ Y ∗,L0 . (5.14)

That is, our estimator (5.13) constitutes a genuine lower bound. This means that, on average,
we indeed obtain a lower bound to the optimal solution given by the upper Snell envelope.
Furthermore, as a consequence of Proposition 5.3 and Theorem 4.3, the lower bound converges
to the optimal solution.

Summarizing succinctly: given a time grid Π, our explicit numerical construction of the
lower bound consists of the following steps:

(1.) Select K1 basis functions and run N1 Monte Carlo simulations to determine M
K1,N1 and

cK1,N1 . To describe their evolution, it is sufficient to store the corresponding (γN1
sjp)j,p,

(βN1
sjp)j,p and (β̃N1

sjp)j,p. [(BSDE 1).]

(2.) Use (γN1
sjp)j,p, (βN1

sjp)j,p and (β̃N1
sjp)j,p to estimate

∑L
l=1 fτ l(Xτ l). Select K2 basis func-

tions and run N2 Monte Carlo simulations to determine (ZN2 , Z̃N2) using the estimated∑L
l=1 fτ l(Xτ l) as terminal condition. To describe the evolution of this process it is suffi-

cient to store the corresponding (βN2
sjp)j,p and (β̃N2

sjp)j,p. [(BSDE 2).]

(3.) With (βN2
sjp)j,p and (β̃N2

sjp)j,p at hand from Step (2.), simulate N3 copies of dQapprox

dP . Fur-

thermore, with (γN1
sjp)j,p, (βN1

sjp)j,p and (β̃N1
sjp)j,p at hand from Step (1.), simulate N3 copies

of
∑L

l=1 fτ l,n(Xn
τ l,n

). Using (5.13), a genuine lower bound to the upper Snell envelope is
then obtained.

Note that the Monte Carlo simulations are done consecutively and are not nested, so that
the total computation time depends only on N1 +N2 +N3. We summarize the results of this
subsection in the following theorem:

Theorem 5.4 The estimator Ỹ low,L
0 defined in (5.13) is a genuine lower bound to the upper

Snell envelope, i.e., E
[
Ỹ low,L

0

]
≤ Y ∗,L0 . Furthermore, Ỹ low,L

0 converges to Y ∗,L0 as N1, N2, N3,

K1 and K2 tend to infinity and ∆ tends to zero, i.e.,

lim
∆→0

lim
Ki→∞,i=1,2

lim
Ni→∞,i=1,2,3

Ỹ low,L
0 = Y ∗,L0 .

5.3.1 Subtracting the associated ρ-martingale in Eqn. (5.13): Reducing the vari-
ance while not inducing a bias

Let (ZN , Z̃N ) be approximations of the ‘true’ solution to the BSDE with terminal condition
U . Denote by Q a probability measure defined by

dQ
dP

= D
(∫ T

0
HsdWs +

∫ T

0
H̃sdÑs

)
, with (Hs, H̃s) ∈ ∂g(s,ZNs , Z̃Ns ). (5.15)
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By (5.7), EQ [U ] yields a lower bound to ρ0(U). (If the ZN and Z̃N were exact, then Q = Qg

and EQ [U ] = EQg [U ] = ρ0(U).)
The following proposition will help to reduce the variation in our numerical scheme.

Proposition 5.5 Let M
N

be the ρ-martingale defined by

M
N
t := −

∫ t

0
g(s,ZNs , Z̃Ns )ds+

∫ t

0
ZNs dWs +

∫ t

0
Z̃Ns dÑs.

Then, subtracting the ρ-martingale from the terminal condition does not induce a bias, i.e.,

EQ

[
U −MN

T

]
= EQ [U ] .

We finally note that if we would have that Q = Qg from Eqn. (5.12), then, by the definition

of M
N
t , U −MN

T = EQg [U ] = ρ0(U) were constant a.s. Hence, if Q is approximately Qg, then

U −MN
T is approximately constant. More formally, if M

N
T converges to MT in L2, we have

that

lim
N→∞

U −MN
T = U −MT = constant,

where the convergence should be understood in L2. In particular, if M
N
T → MT in L2, then

Var(U −MN
T )→ 0 as N →∞.

Inspired by this theoretical result, which may be referred to as an almost sure property of
a second kind to distinguish it from the additive dual representation’s almost sure property,
we will in our numerical analysis subtract the associated ρ-martingale from the right-hand side
of Eqn. (5.13) when computing the genuine lower bound: it will reduce the variance without
inducing a bias.

5.4 Converging Approximate and Genuine Upper Bounds

This subsection develops an explicit approximate upper bound that converges to the upper
Snell envelope asymptotically, and an explicit genuine upper bound that not only converges to
the upper Snell envelope but is also biased high at the pre-limiting level. To obtain an upper
bound with Theorem 3.1, we set

U := max
0≤j1<j2<···<jL

L∑
l=1

(
fjl(Xjl)−M

∗,L−l+1
jl

+M∗,L−l+1
jl−1

)
.

Since we cannot compute (M∗) exactly, we approximate, in view of (4.6), the terminal condition

U by the ρ-martingale (M
K1,N1) constructed in Section 5.2, i.e., we set

UN1 := max
0≤j1<j2<···<jL

L∑
l=1

(
fjl(Xjl)−M

L−l+1,K1,N1

jl
+M

L−l+1,K1,N1

jl−1

)
.

Next, we define

XN1
ti

:=

(
Xti ,M

K1,N1

ti , max
k≤L:0≤j1<j2<···<jk≤btic

k∑
l=1

(
fjl(Xjl)−M

L−l+1,K1,N1

jl
+M

L−l+1,K1,N1

jl−1

))
.
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Clearly, the terminal condition UN1 depends only on XN1
T . Next, note that, for every ti, we

have that Hti is a function of Xti , and, for every r > i, M
K1,N1

tr only depends on M
K1,N1

ti ,
(Xtl)i≤l≤r, (Wtl −Wti)i≤l≤r and (Ntl −Nti)i≤l≤r where both of the latter are independent of
Ftr . From this we may conclude that XN1 is a Markov process on the time grid Π.

Next, we solve numerically the BSDE (5.8) with UN1 . To do so we will consider an approx-
imation scheme. We can simulate paths of the adapted process

(XN1,n
ti

)i =

(
Xn
ti ,M

K1,N1,n
ti ,

max
k≤L:0≤j1<j2<···<jk≤btic

k∑
l=1

(
fjl(X

n
jl

)−ML−l+1,K1,N1,n
jl

+M
L−l+1,K1,N1,n
jl−1

))
i

,

for n = 1, . . . , N4. To compute the BSDE with terminal condition UN1 , let K4 be the number of
basis functions in the least squares Monte Carlo regression. Employing the algorithm described
in Section 5.2, we can construct the coefficients γN4

sjp , β
N4
sjp and β̃N4

sjp , and processes

(Y
N4,L,ZN4 , Z̃N4). (5.16)

Note that by applying Proposition 5.3 and Theorem 4.3 twice we may conclude that, in L2,

lim
∆→0

lim
Ki→∞,i=1,4

lim
Ni→∞,i=1,4

(Y
N4,L,ZN4 , Z̃N4) = (Y ∗,L,Z∗, Z̃∗). (5.17)

In particular, Y
N4,L constitutes a converging approximate upper bound to the upper Snell

envelope. From now on we assume that we have already estimated Y
N4

0 , (βN4
sjp)j,p and (β̃N4

sjp)j,p.
Next, let us develop a genuine upper bound. It is well-known that under assumption (A1),

the functional ρ is Lipschitz continuous (cf. Peng [60]). Define

ÛN4 : = Y
N4,L
0 −

∫ T

0
g(s,ZN4

s , Z̃N4
s )ds+

∫ T

0
ZN4
s dWs +

∫ T

0
Z̃N4
s dÑs

= Y
N4,L
0 −

∑
j,p

g(sjp, β
N4
sjpψ(sjp,XN1

sjp ), β̃N4
sjpψ̃(sjp,XN1

sjp ))∆sjp

+
∑
j,p

βN4
sjpψ(sjp,XN1

sjp )∆Wsjp +
∑
j,p

β̃N4
sjpψ̃(sjp,XN1

sjp )∆Ñsjp . (5.18)

Then, by Theorem 3.1 and the Lipschitz continuity of ρ, we have that

Y ∗,L0 ≤ ρ0(UN1) ≤ ρ0(ÛN4) +K||ÛN4 − UN1 ||2
= Y

N4,L
0 +K||ÛN4 − UN1 ||2, (5.19)

for a Lipschitz constant K analyzed later. We will exploit inequality (5.19) to develop our gen-

uine upper bound. By Proposition 5.3 and Theorem 4.3, Y
N4,L
0 converges to Y ∗,L0 , (ZN4 , Z̃N4)

converges to (Z∗, Z̃∗) in L2(dP× ds) and ||ÛN4 −UN1 ||2 converges to zero, as N1, N4, K1 and
K4 tend to infinity and ∆ tends to zero.

For N5 ∈ N, simulate i.i.d. copies of UN1 through

UN1
n = max

0≤j1<j2<···<jL

L∑
l=1

(
fjl(X

n
jl

)−ML−l+1,K1,N1,n
jl

+M
L−l+1,K1,N1,n
jl−1

)
, n = 1, . . . , N5.
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Next, using (5.18), simulate i.i.d. copies ÛN4
1 , ÛN4

2 , . . . , ÛN4
N5

of ÛN4 . (Recall that Y
N4,L
0 ,

(βN4
sjp)j,p and (β̃N4

sjp)j,p are already available.) Then, (5.19) suggests to estimate the upper bound

ρ0(UN1) by

Y
N4,L
0 +K

√√√√ 1

N5

N5∑
n=1

|ÛN4
n − UN1

n |2.

Note that 1
N5

∑N5
i=1 |Û

N4
i −U

N1
i |2 is an unbiased estimator of E

[
|UN1 − ÛN4 |2

]
. However, taking

the square root of an estimator gives rise to a possible downward bias. If we wish to eliminate
the downward bias, we need to develop one step further, as follows. We simulate independent
(ÛN4

i )i=1,...,2N5 . Then we set

Ỹ upp,L
0 := Y

N4,L
0 +K

1
N5

∑N5
n=1 |ÛN4

n − UN1
n |2√

1
N5

∑2N5
n=N5+1 |Û

N4
n − UN1

n |2
. (5.20)

Since

E

 1
N5

∑N5
n=1 |ÛN4

n − UN1
n |2√

1
N5

∑2N5
n=N5+1 |Û

N4
n − UN1

n |2


= E

[
1

N5

N5∑
n=1

|ÛN4
n − UN1

n |2
]
E

 1√
1
N5

∑2N5
n=N5+1 |Û

N4
n − UN1

n |2


≥ ||ÛN4

n − UN1
n ||2

1√
1
N5

∑2N5
n=N5+1 E

[
|ÛN4
n − UN1

n |2
]

= ||ÛN4
n − UN1

n ||2
1√

E
[
|ÛN4
n − UN1

n |2
] = ||ÛN4

n − UN1
n ||,

Ỹ upp,L
0 thus defined is biased high. Note that the first equality follows from independence and

the inequality is due to a suitable (reversed) application of Jensen’s inequality. As before, as
a consequence of Proposition 5.3 and Theorem 4.3, we have that Ỹ upp,L

0 converges to Y ∗,L0 as
N1, N4, N5, K1 and K4 tend to infinity and ∆ tends to zero.

Summarizing succinctly: given a time grid Π, our explicit numerical construction of the
upper bound consists of the following steps:

(1.) Select K1 basis functions and run N1 Monte Carlo simulations to determine M
K1,N1 and

cK1,N1 . To describe their evolution, it is sufficient to store the corresponding (γN1
sjp)j,p,

(βN1
sjp)j,p and (β̃N1

sjp)j,p. [(BSDE 1).]

(2.) (γN1
sjp)j,p, (βN1

sjp)j,p and (β̃N1
sjp)j,p give rise to a terminal condition UN1 and a Markov process

XN1 defined above. Select K2 basis functions and run N4 Monte Carlo simulations to

calculate (Y
N4,L,ZN4 , Z̃N4) as the solution to the corresponding BS∆Es with the Markov

process XN1 and terminal condition UN1 . Store the corresponding Y
N4,L
0 , (βN4

sjp)j,p and

(β̃N4
sjp)j,p. [(BSDE 2).]
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(3.) With Y
N4,L
0 , (βN4

sjp)j,p and (β̃N4
sjp)j,p at hand from Step (2.), simulate N5 copies of ÛN4

defined by (5.18). Furthermore, with (γN1
sjp)j,p, (βN1

sjp)j,p and (β̃N1
sjp)j,p at hand from Step

(1.), simulate N5 copies of UN1 . Using (5.20), a genuine upper bound to the upper Snell
envelope is then obtained.

Note again that the Monte Carlo simulations are done consecutively and are not nested, so
that the total computation time depends only on N1 +N4 +N5. We summarize the results of
this subsection in the following theorem:

Theorem 5.6 The estimator Ỹ upp,L
0 defined in (5.20) is a genuine upper bound to the upper

Snell envelope, i.e., E
[
Ỹ upp,L

0

]
≥ Y ∗,L0 . Furthermore, Ỹ upp,L

0 converges to Y ∗,L0 as N1, N4, N5,

K1 and K4 tend to infinity and ∆ tends to zero, i.e.,

lim
∆→0

lim
Ki→∞,i=1,4

lim
Ni→∞,i=1,4,5

Ỹ upp,L
0 = Y ∗,L0 .

Moreover, the estimator Y
N4,L
0 defined in (5.16) also converges to Y ∗,L0 as N1, N4, K1 and K4

tend to infinity and ∆ tends to zero.

We finally state the following proposition on the precise Lipschitz constant K appearing in
(5.19).

Proposition 5.7 Let ξ and ξ′ be square-integrable terminal conditions and denote by (Y,Z, Z̃)
and (Y ′, Z ′, Z̃ ′) the associated BSDE solutions. Then,

|Y0 − Y ′0 |2 ≤ exp(L2T )E
[
|δξ|2

]
, (5.21)

where δξ := ξ − ξ′ and with L the Lipschitz constant of the driver g.

6 Numerical Examples

In this section we analyze our approach in numerical examples, including single and multi-
ple stopping, univariate and multivariate stochastic drivers, increasing and decreasing reward
functions, and pure diffusion and jump-diffusion models. As a general observation, we recall
that the computational complexity of the numerically implementable method proposed in this
paper is linear in the number of exercise rights and that it does not require nested simulation.

6.1 Single Stopping: Bermudan Option in a Diffusion Model

The first example studied in this subsection is the pricing problem for a Bermudan-style option
in a single risky asset Black-Scholes model with dividends in the presence of ambiguity. This
example goes back to Andersen and Broadie [1] in a setting without ambiguity, which can

serve as a benchmark case. Throughout this subsection, we consider the dynamics
dXi

t

Xi
t

=

µidt+σidW i
t , i = 1, . . . , d, with µi ∈ R and σi ∈ R>0, where Xi

t is the price of asset i at time t.
Following this literature, we assume that there is a risk-free interest rate of ρ = 0.05, and that
the option’s underlying is a single dividend-paying stock X with constant volatility σ = 0.2
and dividend rate δ = 0.1, resulting in a risk-neutral drift of µ = ρ − δ = −0.05. The first
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product we study is a call option with strike price K = 100 and maturity T = 3. The stock
price at time 0 is varied between x0 ∈ {90, 100, 110}. Exercise dates are specified as tj = jT

10 ,
j = 0, 1, . . . , 10, i.e., there are 9 intermediate exercise dates, and the trivial ones at time t = 0
and at maturity. We allow for ambiguity in the drift and consider g(t, z) = δ1|z|, δ1 > 0; cf.
Example 5.1.

The three BSDEs—ρ-martingale, lower, and upper bounds—are solved with two sets of
simulations. We consider one set of simulations with 100,000 trajectories and 1,000 time steps
for the initial ρ-martingale BSDE, and a second set of simulations with 100,000 trajectories
and 1,000 time steps for the BSDEs associated with the lower and upper bounds. The number
of basis functions is always 52 for Y and 52 for Z. These are 1, x, (x− qit)+ where the qit are
1, 3, 5, . . . , 99 percent quantiles of Xt estimated from the trajectories in the initial run of least
squares Monte Carlo. Thus, we approximate all unknown functions by linear splines. Notice
that this function basis is not problem-dependent and that its precision can be controlled by
the chosen grid of quantiles. Numerically, this basis works much better in our experiments
than a locally linear approximation, which would also include the discontinuous terms 1{x>qit}.
In all our numerical experiments, the implementation of the regression is based on (5.10).

For the evaluation of the lower bound, we draw a new sample with a larger number of 400,000
trajectories. For the evaluation of the upper bound, we need a very fine time discretization

to obtain a small ‘tracking error’, defined as
√

1
N5

∑N5
i=1 |Û

N4
i − U

N1
i |2; cf. (5.20). We need,

however, fewer trajectories, because the pathwise dual representation leads to a very small
variance, as expected from the theoretical results in Section 3.2. We thus choose the number
of trajectories to be 1,000 and increase the number of time steps by a factor 100 to 100,000.
Here, we do not run new regressions but simply repeat each set of coefficients 100 times. This
device of increasing the time discretization and extrapolating regression coefficients is due to
Belomestny, Bender, Schoenmakers [10], in a standard stopping setting without ambiguity.
However, due to the additional non-linearity from the BSDE, it is not sufficient in our setting
to just run the regressions at exercise times only; we need them at our fine grid Π.

Tables 1–3 summarize lower and upper bounds for different degrees of ambiguity (δ1) and
different values of the initial stock price (x0). The first four columns display lower bounds along
with their standard errors. Here, “LB without M” is the lower bound in Eqn. (5.13) without
subtraction of the ρ-martingale, while “LB” is the definitive lower bound that subtracts the ρ-
martingale, as discussed in Section 5.3.1. As the results confirm, subtraction of the ρ-martingale
leads to a substantial variance reduction. The next three columns correspond to the upper

bound. Here, Y
N4

0 is the solution to the upper bound BSDE, i.e., the approximate upper bound,
“TE” is the tracking error defined above, and “UB” combines the two to obtain the genuine

upper bound in Eqn. (5.20). The final two columns display the mean of Y
N4

T = UN1 together
with its standard error. The point here is to illustrate that having only 1,000 trajectories
in the upper bound simulation is already sufficient, since the terminal condition has a (very)

small variance. In general, we observe that the gaps between LB on the one hand and Y
N4

0

and UB on the other hand are (very) small. When 1/δ1 ≡ ∞ (i.e., in the no-ambiguity case),
we can compare our results to benchmark values, e.g., from Andersen and Broadie [1]. With
x0 = 100, the true value is 7.98. This should be compared to our genuine lower bound of 7.98,
our approximate upper bound of 8.00, and our genuine upper bound of 8.07, corresponding to
gaps of 0.2% and 1.0% of the option value, respectively.

In Figure 1 we analyze exercise boundaries. These boundaries are theoretically independent
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1/δ1 LB without M s.e. LB s.e. Y
N4

0 TE UB E[Y
N4

T ] s.e.

10 5.4901 0.0197 5.4635 0.0107 5.4833 0.0843 5.5689 5.4679 0.0026
30 4.7384 0.0158 4.7161 0.0096 4.7326 0.0836 4.8163 4.7184 0.0025
100 4.5005 0.0147 4.4795 0.0093 4.4962 0.0812 4.5775 4.4830 0.0025
300 4.4349 0.0144 4.4143 0.0092 4.4310 0.0806 4.5116 4.4180 0.0024

1,000 4.4121 0.0143 4.3917 0.0092 4.4084 0.0804 4.4888 4.3955 0.0024
10,000 4.4030 0.0142 4.3827 0.0092 4.3997 0.0803 4.4800 4.3868 0.0024
∞ 4.4024 0.0142 4.3821 0.0092 4.3987 0.0803 4.4790 4.3859 0.0024

Table 1: Bounds for x0 = 90

1/δ1 LB without M s.e. LB s.e. Y
N4

0 TE UB E[Y
N4

T ] s.e.

10 9.4387 0.0244 9.4069 0.0143 9.4331 0.0721 9.5063 9.4110 0.0021
30 8.4419 0.0199 8.4161 0.0132 8.4445 0.0700 8.5146 8.4232 0.0020
100 8.1305 0.0186 8.1068 0.0129 8.1316 0.0678 8.1994 8.1113 0.0019
300 8.0426 0.0183 8.0195 0.0128 8.0450 0.0678 8.1127 8.0249 0.0019

1,000 8.0152 0.0182 7.9923 0.0128 8.0150 0.0678 8.0828 7.9949 0.0019
10,000 8.0039 0.0181 7.9811 0.0127 8.0034 0.0678 8.0712 7.9833 0.0019
∞ 8.0030 0.0181 7.9802 0.0127 8.0022 0.0678 8.0699 7.9821 0.0019

Table 2: Bounds for x0 = 100

1/δ1 LB without M s.e. LB s.e. Y
N4

0 TE UB E[Y
N4

T ] s.e.

10 14.7691 0.0279 14.7380 0.0179 14.7718 0.0682 14.8411 14.7460 0.0020
30 13.6662 0.0228 13.6414 0.0166 13.6814 0.0669 13.7484 13.6570 0.0019
100 13.3221 0.0214 13.2994 0.0163 13.3400 0.0658 13.4058 13.3164 0.0019
300 13.2257 0.0211 13.2037 0.0162 13.2459 0.0658 13.3116 13.2225 0.0019

1,000 13.1924 0.0209 13.1706 0.0162 13.2133 0.0657 13.2790 13.1900 0.0019
10,000 13.1791 0.0209 13.1574 0.0162 13.2007 0.0657 13.2664 13.1775 0.0019
∞ 13.1774 0.0209 13.1556 0.0162 13.1994 0.0657 13.2650 13.1761 0.0019

Table 3: Bounds for x0 = 110

of the starting values of x0. In order to obtain accurate exercise boundaries already for early
time points, we need to make sure that the simulated trajectories are sufficiently spread out
over the entire time span from 0 to T and are not concentrated around a fixed value of x0 close
to time 0. To this end, we start simulating trajectories at time −1 and set the drift of X to zero
over the interval [−1, 0]. Moreover, we double the number of basis functions by choosing a finer
grid of quantiles, 0.005, 0.0015, . . . , 0.995, and double the number of trajectories to 200,000, to
account for the fact that we now have a wider space over which we approximate.

In the left panel of Figure 1, we plot the threshold value that the stock price has to exceed
to make stopping optimal (i.e., the continuation value), for different degrees of ambiguity (δ1),
as a function of the exercise dates. The solid line depicts exercise boundaries without ambiguity
(1/δ1 = ∞), while the dashed line corresponds to 1/δ1 = 100 and the dotted line corresponds
to 1/δ1 = 10. In all cases, continuation values increase as we move away from the no-ambiguity
case (1/δ1 = ∞). Thus, with more ambiguity, the decision-maker stops later. Intuitively, for
a call option’s payoff function, the possibility of a (prosperous) deviation from the reference
model which accumulates over time makes the option more valuable at later dates. Hence, the
decision-maker will stop later.
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Figure 1: Exercise boundaries (left panel: call; right panel: put; solid: 1/δ1 = ∞; dashed:
1/δ1 = 100; and dotted: 1/δ1 = 10).

A similar pattern emerges when we replace the call option payoff function by a put option,
with strike price K = 100 and x0 = 100. To make exercise decisions non-trivial, we set the
dividend rate equal to zero in this case, all else equal. Table 4 and Figure 1 (right panel)
display the corresponding price bounds and exercise boundaries. For the put option, contrary
to for the call option, exercise becomes optimal when the stock price falls below the exercise
boundaries in the right panel of Figure 1. Similar to the call option, with more ambiguity, the
decision-maker stops later. In this case, the possibility of an unfavorable deviation from the
reference model that accumulates over time makes the option more valuable at later dates.

1/δ1 LB without M s.e. LB s.e. Y
N4

0 TE UB E[Y
N4

T ] s.e.

10 9.8647 0.0202 9.8810 0.0105 9.8767 0.0482 9.9256 9.8678 0.0015
30 8.9584 0.0169 8.9749 0.0101 8.9723 0.0480 9.0204 8.9622 0.0015
100 8.6643 0.0160 8.6808 0.0100 8.6785 0.0478 8.7264 8.6684 0.0014
300 8.5832 0.0157 8.5997 0.0100 8.5967 0.0476 8.6443 8.5865 0.0014

1,000 8.5540 0.0156 8.5705 0.0100 8.5683 0.0475 8.6157 8.5581 0.0014
10,000 8.5437 0.0156 8.5603 0.0100 8.5573 0.0475 8.6048 8.5471 0.0014
∞ 8.5427 0.0156 8.5593 0.0100 8.5561 0.0475 8.6036 8.5459 0.0014

Table 4: Bounds for x0 = 100 (put option)

Next, we consider a two-dimensional version of this example. We suppose that there are two
risky assets X1 and X2, which are assumed to be independent and identically distributed with
the same dynamics as the single dividend-paying stock in the univariate case. The payoff func-
tion we consider is a max-call, that is, stopping at time t yields a reward of (max(X1

t , X
2
t )−K)+.

We set X1
0 = X2

0 = 100 and K = 100, and allow for eleven equidistant exercise opportunities
including 0 and T , as before. All other problem parameters and specifications remain the same.

Regarding the numbers of trajectories and time steps in the different stages of the algorithm,
we maintain the same specifications as in the univariate case. The function basis is constructed
as follows. We always use the same set of 441 basis functions for Y and for (Z, Z̃). These consist

of the constant 1, 20 univariate basis functions φ
(1)
i (x1), i = 1, . . . , 20, which only depend on
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X1, 20 univariate basis functions φ
(2)
j (x2), j = 1, . . . , 20, which only depend on X2, and all

products φ
(1)
i (x1)φ

(2)
j (x2), i, j = 1, . . . , 20. The 20 univariate basis functions are constructed

as in the univariate case but with a slightly coarser grid, i.e., for d = 1, 2, we choose xd and

(xd − q(d)
it )+ where the q

(d)
it are the 5, 10, . . . , 95 percent quantiles of Xd

t estimated from the
trajectories in the initial run of least squares Monte Carlo. This bivariate basis of linear splines
is relatively large but fairly generic, i.e., it exploits additional knowledge about the problem
far less than, e.g., the 2d-implementations in Belomestny, Bender and Schoenmakers [10] or
Krätschmer et al. [50], which rely on prices of European max-call options. In principle, one
could increase efficiency by including a variable selection step in the first regression.

We observe from Table 5 that the gaps between the genuine lower bound and the approxi-
mate upper bound are fairly small, corresponding to about only 0.4% of the option value. The
presence of ambiguity amplifies in the multivariate setting and its impact is more pronounced
than in the univariate case.

1/δ1 LB without M s.e. LB s.e. Y
N4

0 E[Y
N4

T ] s.e.

10 16.5266 0.0351 16.5252 0.0196 16.5902 16.5705 0.0230
30 14.7575 0.0268 14.7513 0.0172 14.8054 14.7992 0.0216
100 14.1997 0.0246 14.1921 0.0167 14.2418 14.2365 0.0211
300 14.0434 0.0240 14.0348 0.0166 14.0861 14.0807 0.0210

1,000 13.9916 0.0238 13.9830 0.0165 14.0322 14.0268 0.0210
10,000 13.9700 0.0238 13.9618 0.0165 14.0115 14.0061 0.0210
∞ 13.9679 0.0237 13.9597 0.0165 14.0092 14.0038 0.0210

Table 5: Bounds for x1
0 = x2

0 = 100 (bivariate case)

6.2 Multiple Stopping: Swing Option in a Two-Factor Jump-Diffusion Model

Supported by the accuracy and stability of our pathwise duality approach for optimal single
stopping, we now proceed to multiple stopping. In this subsection, we analyze a canonical
multiple stopping problem, that of swing option pricing in electricity markets, in the presence
of ambiguity. For this purpose, we consider a two-factor jump-diffusion model for the electricity
log-price process, which has been suggested by Hambley, Howison and Kluge [42] to be a more
realistic extension of the one-factor Gaussian model proposed by Lucia and Schwartz [55] and
implemented e.g., by Bender, Schoenmakers and Zhang [15].

Specifically, we assume that the electricity price Xt at time t > 0 is given by Xt =
X0 exp(f(t)+ut+vt), where the two stochastic factors ut and vt are mutually independent and
f(t) is a deterministic function of time that can be used to calibrate the model. The factor u
is Gaussian and follows the SDE

dut = −κuut + σudWt,

with u0 = 0, κu, σu > 0, and Wt a standard Brownian motion. The jump component v follows
the SDE

dvt = −κvvt− + JdNt,

where v0 = 0, N is a (non-compensated) Poisson process with arrival rate λP, and κv and
the (deterministic) jump size J are positive constants. In the special case κu ≡ κv, this
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model reduces to a mean-reverting one-factor jump-diffusion model for the log-price process.
For κv � κu, the model combines a mean-reverting Gaussian component, like in the Lucia-
Schwartz model, with occasional highly transitory spikes; see Hambley, Howison and Kluge [42]
for further discussion. Using their formula (3), the processes u and v can be simulated forward
in time without discretization error.

In our illustration, we consider a swing option contract that gives the owner the right to
purchase electricity at a strike price K, and consider L exercise rights, in the time interval
[0, T ]. We assume a fixed number of equidistant exercise opportunities. We set the parameters
of the price process as S0 = 10, f ≡ 0, κu = 10, σu = 0.25, κv = 50, λP = 1 and J = {0, 0.06}.
Furthermore, we set the contract parameters as K = 10, T = 5 and consider 21 equidistant
exercise opportunities (including one at time 0 and one at time T ). We allow for varying
degrees of ambiguity towards the Gaussian and the jump components of the price process and
consider g(t, z, z̃) = δ1|z|+ δ2|z̃|, δ1, δ2 > 0; cf. Example 5.1.

The overall numerical implementation is very similar to the previous optimal single stopping
example. The three BSDEs—ρ-martingale, lower, and upper bounds—are solved with two sets
of simulations. We consider one set of simulations with 100,000 trajectories and 1,000 time
steps for the initial ρ-martingale BSDE and a second set of simulations with 100,000 trajectories
and 1,000 time steps for the BSDEs associated with the lower and upper bounds. We choose
the same basis functions as in the single stopping example and thus obtain 52 basis functions
for Y and 52 for Z, and now also 52 basis functions for Z̃. Note that these functions depend
only on X but not on u and v. For the evaluation of the lower bound, we draw a new sample
of 100,000 trajectories and 1,000 time steps. For the evaluation of the upper bound, we again
artificially create a finer time discretization, by repeating each set of coefficients 100 times, and
reduce the number of trajectories to 1,000.

Tables 6–7 and 8–13 (in the Appendix) summarize lower and upper bounds for different
numbers of exercise rights, different values of δ1 and δ2, and for different values of J (i.e.,
without and with jump component). Upon comparing the results for one exercise right to
those for multiple exercise rights, we readily observe that the impact of ambiguity is even more
pronounced in the multiple stopping case.

L 1 2 3 4 5

LB 0.9526 1.7020 2.3178 2.8290 3.2539
s.e. 0.0012 0.0018 0.0023 0.0027 0.0030

Y
N4,L

0 0.9599 1.7138 2.3319 2.8453 3.2717
TE 0.0315 0.0407 0.0484 0.0526 0.0568
UB 0.9914 1.7546 2.3803 2.8979 3.3284

Table 6: Bounds for δ1 = 0 and J = 0

L 1 2 3 4 5

LB 0.9796 1.7572 2.4040 2.9293 3.3946
s.e. 0.0027 0.0048 0.0065 0.0079 0.0092

Y
N4,L

0 1.0129 1.8174 2.4851 3.0470 3.5205
TE 0.0331 0.0426 0.0469 0.0520 0.0562
UB 1.0495 1.8644 2.5370 3.1045 3.5826

Table 7: Bounds for δ1 = 0.2 and J = 0
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[68] Ruszczyński, A., and Shapiro, A. (2006). Conditional risk mappings. Mathematics of Operations Re-
search 31, 544–561.
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ONLINE APPENDIX

A Proofs and Auxiliary Results for Section 2

A.1 An Auxiliary Lemma on Sensitivity (P2) and the Proofs of Lemmas 2.1
and 2.2

We state the following auxiliary lemma:

Lemma A.1 (P2a) If subadditivity (P1) applies, then sensitivity (P2) of ρ implies

[X ≥ 0 and ρt(X) ≤ 0] =⇒ X = 0, for all X ∈ X, and t ∈ {0, . . . , T} . (A.1)

Proof Let ρ be subadditive (P1) and sensitive (P2). Suppose ρi (Y ) ≤ 0 and Y ≥ 0. Then,
−Y ≤ 0 and so, by subadditivity,

0 = ρt (Y − Y ) ≤ ρt (Y ) + ρt (−Y ) ≤ ρt (−Y ) .

Hence, by (P2), −Y = 0, i.e., Y = 0 a.s.

Proof of Lemma 2.1. For i = T the statement is trivial. Assuming that it holds for 0 < i ≤ T,
we have

ρi−1

(
Mτi−1

)
= ρi−1

(
1τi−1=i−1Mi−1 + 1τi−1>i−1Mτi−1∨i

)
(by (C2) and (C4)) = 1τi−1=i−1Mi−1 + 1τi−1>i−1ρi−1

(
Mτi−1∨i

)
(by (C3)) = 1τi−1=i−1Mi−1 + 1τi−1>i−1ρi−1 ◦ ρi

(
Mτi−1∨i

)
(by induction) = 1τi−1=i−1Mi−1 + 1τi−1>i−1ρi−1 (Mi)

(property of ρ-martingale) = Mi−1.

Proof of Lemma 2.2. (i) For an arbitrary X ∈ X, and an arbitrary set A ∈ B (R) , we have
for any i ≥ t,

{ρτ (X) ∈ A} ∩ {τ = i} =


T∑
j=t

1τ=jρj(X) ∈ A

 ∩ {τ = i}

= {ρi(X) ∈ A} ∩ {τ = i} ∈ Fi,

hence ρτt(X) ∈ Fτ .

(ii) Induction: For t = T the statements are trivial. Suppose they are true for 0 < t ≤ T. Now
let τ ≥ t− 1 and define τ1 := τ ∨ t. Then,

ρτ (X) = 1τ=t−1ρt−1(X) + 1τ>t−1ρτ1(X). (A.2)
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Thus, for any X ∈ X,

ρt−1(X) =1τ=t−1ρt−1(X) + 1τ>t−1ρt−1(X)

(by (C3) and induction) =1τ=t−1ρt−1(X) + 1τ>t−1ρt−1 ◦ ρt ◦ ρτ1(X)

(by (C2) and (A.2)) =1τ=t−1ρt−1(X) + 1τ>t−1ρt−1 ◦ ρt ◦ (ρτ (X)− 1τ=t−1ρt−1(X))

(by (C4)) =1τ=t−1ρt−1(X) + 1τ>t−1 (ρt−1 ◦ ρt ◦ ρτ (X)− 1τ=t−1ρt−1(X))

(by (C3) and (A.2)) =1τ=t−1ρτ (X) + 1τ>t−1ρt−1 ◦ ρτ (X)

(by i) and (C6)) =ρt−1 ◦ ρτ (X).

(iii) Let X ∈ Fτ and Y ∈ FT . Then, 1τ=t−1X ∈ Ft−1. Indeed, for any A ∈ B (R) one has

{1τ=t−1X ∈ A} = ({1τ=t−1X ∈ A} ∩ {τ = t− 1}) ∪ ({0 ∈ A} ∩ {τ > t− 1})
= ({X ∈ A} ∩ {τ = t− 1}) ∪ ({0 ∈ A} ∩ {τ > t− 1}) ∈ Ft−1.

Furthermore, also X ∈ Fτ1 since τ1 ≥ τ. Hence, we have by (A.2)

ρτ (X + Y ) =1τ=t−1ρt−1(X + Y ) + 1τ>t−1ρτ1(X + Y )

((C2) and induction) =1τ=t−1ρt−1(1τ=t−1X + 1τ=t−1Y ) + 1τ>t−1 (X + ρτ1(Y ))

((C4) and above argument) =1τ=t−1 (1τ=t−1X + 1τ=t−1ρt−1(Y )) + 1τ>t−1 (X + ρτ1(Y ))

=X + 1τ=t−1ρt−1(Y ) + 1τ>t−1ρτ1(Y )

(by (A.2)) =X + ρτ (Y ).

A.2 Auxiliary Results on the Robust Single Optimal Stopping Problem (2.3)

As is well-known, for the robust optimal single stopping problem, we may find an optimal
stopping family (τ∗t )t∈{0,...,T} satisfying

Y ∗t = sup
τ∈Tt

ρt(Hτ ) = ρt(Hτ∗t
), t ∈ {0, . . . , T},

and, furthermore, the Bellman principle

Y ∗t = max
(
Ht, ρt

(
Y ∗t+1

))
, t ∈ {0, . . . , T − 1}, (A.3)

is satisfied (see e.g., Krätschmer and Schoenmakers [49] and Krätschmer et al. [50] for details).
Let us briefly recall the already existing (non-pathwise) additive dual representation for the

optimal single stopping problem (2.3) (cf. Krätschmer and Schoenmakers [49] and Krätschmer
et al. [50]), but with a different proof adapted to the goals in this paper and exploited later.

Proposition A.2 Let ρ be a DMU satisfying (C1)–(C4) and let M∗ = M∗ρ ∈ Mρ
0 be the

unique ρ-martingale in the ρ-Doob decomposition of Y ∗ = (Y ∗t )0≤t≤T . Then the optimal single
stopping problem (2.3) has an additive dual representation

Y ∗t = inf
M∈Mρ

0

ρt

(
max

j∈{t,...,T}
(Hj +MT −Mj)

)
(A.4)

= ρt

(
max

j∈{t,...,T}

(
Hj +M∗T −M∗j

) )
, t ∈ {0, . . . , T}.
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Proof of Proposition A.2. For any ρ-martingale M and any stopping time τ ≥ t, we have
by Lemmas 2.1 and 2.2 that

ρt

(
max

j∈{t,...,T}
(Hj +MT −Mj)

)
≥ ρt (Hτ +MT −Mτ ) = ρt ◦ ρτ (Hτ +MT −Mτ )

= ρt (Hτ −Mτ + ρτ (MT )) = ρt (Hτ ) ,

which implies

Y ∗t ≤ inf
M∈Mρ

0

ρt

(
max

j∈{t,...,T}
(Hj +MT −Mj)

)
.

On the other hand, for the ρ-Doob martingale M∗ it holds that

Hj +M∗t −M∗j = Hj +

j−1∑
r=t

M∗r −M∗r+1

(by (2.5)) = Hj +

j−1∑
r=t

ρr
(
Y ∗r+1

)
− Y ∗r+1

(Bellman) ≤ Hj +

j−1∑
r=t

Y ∗r − Y ∗r+1 = Y ∗t +Hj − Y ∗j ≤ Y ∗t ,

whence

ρt

(
max

j∈{t,...,T}

(
Hj +M∗T −M∗j

) )
= ρt

(
max

j∈{t,...,T}

(
Hj +M∗t −M∗j

)
+M∗T −M∗t

)
≤ Y ∗t + ρt

(
M∗T −M∗t

)
= Y ∗t .

B Proofs and Auxiliary Results for Section 3

B.1 Proofs and Auxiliary Results for Section 3.1

We state the following lemma:

Lemma B.1 Suppose that ρ satisfies (C1)–(C4) and (P1). Then, for any adapted process H,
any ρ-martingale M , and any stopping τ , with T ≥ τ ≥ t a.s. it holds that

ρt(Hτ ) ≤ ρt(Hτ +Mt −Mτ ), 0 ≤ t ≤ T.

Proof of Lemma B.1. Using Lemma 2.2 and the proof of Proposition A.2 one has

ρt(Hτ ) = ρt(Hτ +MT −Mτ )

= ρt(Hτ +Mt −Mτ +MT −Mt)

(by (P1)) ≤ ρt (Hτ +Mt −Mτ ) + ρt(MT −Mt)

((C4) and ρ-mart. prop.) = ρt (Hτ +Mt −Mτ ) .
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Proof of Theorem 3.1. First we show that for any t = 0, . . . , T , any sequence of stopping
times with t ≤ τ1 < τ2 < · · · < τL a.s., and any set of ρ-martingales M (1), . . . ,M (L), we have

ρt

(
L∑
k=1

Hτk

)
≤ ρt

(
L∑
k=1

(
Hτk +M (k)

τk−1
−M (k)

τk

))
. (B.1)

For L = 1, this statement boils down to Lemma B.1. Let us assume the statement is true for
some L ≥ 1. Take 0 ≤ t ≤ T and t ≤ τ1 < τ2 < · · · < τL+1 arbitrarily. Observe that (with
ρT+1 := ρT )

ρτ1

(
L+1∑
k=2

(
Hτk +M (k)

τk−1
−M (k)

τk

))
(B.2)

=
T∑
j=t

1τ1=jρj ◦ ρj+1

(
1j+1≤τ2<···<τL+1

L+1∑
k=2

(
Hτk +M (k)

τk−1
−M (k)

τk

))

(by induction) ≥
T∑

j=τ1

1τ1=jρj

(
1j<τ2<···<τL+1

L+1∑
k=2

Hτk

)
= ρτ1

(
L+1∑
k=2

Hτk

)
.

One may thus write, by Lemma 2.2,

ρt

(
L+1∑
k=1

(
Hτk +M (k)

τk−1
−M (k)

τk

))

= ρt

(
Hτ1 +M

(1)
t −M (1)

τ1 + ρτ1

(
L+1∑
k=2

(
Hτk +M (k)

τk−1
−M (k)

τk

)))

(by Lemma B.1) ≥ ρt

(
Hτ1 + ρτ1

(
L+1∑
k=2

(
Hτk +M (k)

τk−1
−M (k)

τk

)))

(by (B.2)) ≥ ρt

(
Hτ1 + ρτ1

(
L+1∑
k=2

Hτk

))

(Lemma 2.2) = ρt

(
L+1∑
k=1

Hτk

)
,

which proves (B.1). As a corollary, we obtain

Y ∗,Lt ≤ ρt

(
max

t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M

(k)
jk−1
−M (k)

jk

))
, (B.3)

where we note that for any set A of probability one has

1Aρt (X) = ρt (1AX) = ρt (X) ,

due to monotonicity (C1). Since the ρ-martingales M (k) are arbitrary, we thus arrive at

Y ∗,Lt ≤ inf
M(1),...,M(L)∈Mρ

0

ρt

(
max

t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M

(k)
jk−1
−M (k)

jk

))
. (B.4)
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On the other hand, for the ρ-Doob martingales M∗,L−k+1, we may write (with j0 = t)

L∑
k=1

(
Hjk +M∗,L−k+1

jk−1
−M∗,L−k+1

jk

)

=
L∑
k=1

Hjk +

jk−1∑
r=jk−1

(
M∗,L−k+1
r −M∗,L−k+1

r+1

)
=

L∑
k=1

Hjk +

L∑
k=1

jk−1∑
r=jk−1

(
ρr

(
Y ∗,L−k+1
r+1

)
− Y ∗,L−k+1

r+1

)

=
L∑
k=1

Hjk +
L∑
k=1

jk−1∑
r=jk−1

(
Y ∗,L−k+1
r − Y ∗,L−k+1

r+1

)

+

L∑
k=1

jk−1∑
r=jk−1

(
ρr

(
Y ∗,L−k+1
r+1

)
− Y ∗,L−k+1

r

)

=

L∑
k=1

Hjk +

L∑
k=1

(
Y ∗,L−k+1
jk−1

− Y ∗,L−k+1
jk

)

+

L∑
k=1

jk−1∑
r=jk−1

(
ρr

(
Y ∗,L−k+1
r+1

)
− Y ∗,L−k+1

r

)

= Y ∗,Lj0
+HjL − Y

∗,1
jL︸ ︷︷ ︸

≤0

+

L−1∑
k=1

(
Hjk + Y ∗,L−kjk

− Y ∗,L−k+1
jk

)
︸ ︷︷ ︸

≤0

+

L∑
k=1

jk−1∑
r=jk−1

(
ρr

(
Y ∗,L−k+1
r+1

)
− Y ∗,L−k+1

r

)
︸ ︷︷ ︸

≤0

≤ Y ∗,Lj0
.

That is,

max
t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M∗,L−k+1

jk−1
−M∗,L−k+1

jk

)
≤ Y ∗,Lt ,

while, due to (B.3),

ρt

(
max

t≤j1<j2<···<jL

L∑
k=1

(
Hjk +M∗,L−k+1

jk−1
−M∗,L−k+1

jk

))
≥ Y ∗,Lt .

Thus, by monotonicity (C1) and Ft-invariance (C6) we obtain (ii), and, by sensitivity (P2), we
obtain (iii). Finally, (ii) combined with (B.4) yields (i).

B.2 Proofs and Auxiliary Results for Section 3.2

Proof of Theorem 3.4. Suppose that θi := maxi≤j≤T (Hj −Mj + Mi) ∈ Fi and define the
stopping time

τi := inf{j ≥ i : Hj −Mj +Mi ≥ θi}.
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By the definition of θi, clearly i ≤ τi ≤ T a.s. Hence, we have on the one hand

Y ∗i ≥ ρi(Hτi) ≥ ρi(Mτi −Mi + θi) = θi,

by the fact that −Mi + θi ∈ Fi, translation invariance (C4), and Lemma 2.1. On the other
hand, we have θi = ρi(θi) ≥ Y ∗i due to Theorem 3.2, Eqn. (3.6).

Proof of Lemma 3.5. By writing

θi+ = max
i+1≤j≤T

(Hj −Mj +Mi+1)︸ ︷︷ ︸
∈Fi+1

+Mi −Mi+1, (B.5)

and applying Theorem 3.4, we have

θi+ +Mi+1 −Mi = Y ∗i+1. (B.6)

Then, (i) follows by applying ρi on both sides, using conditional translation invariance (C4)
and the martingale property. Next, (ii) is obvious from (B.6).

Proof of Proposition 3.6. It is sufficient to show that

ρi
(
1|Y |≥ε

)
≤
ρi
(
Y 2
)

ε2
. (B.7)

Indeed, one has by monotonicity and positive homogeneity,

ρi
(
Y 2
)

= ρi
(
Y 21|Y |≥ε + Y 21|Y |<ε

)
≥ ρi

(
Y 21|Y |≥ε

)
≥ ρi

(
ε21|Y |≥ε

)
= ε2ρi

(
1|Y |≥ε

)
.

Proof of Lemma 3.7. Indeed, Varρi (X) = ρi

(
(X − ρi (X))2

)
= 0 implies, by (A.1), X −

ρi (X) = 0, hence X ∈ Fi. The reverse direction is trivial.

Proof of Theorem 3.8. Suppose that the assumptions of the theorem are satisfied. Fix
an i ∈ {0, . . . , T} and take an ε > 0. Upon introducing an auxiliary time ∂ > T and setting

H∂ = 0, we next define the stopping time τ
(n)
i = inf{j ≥ i : Hj−M (n)

j +M
(n)
i ≥ ρi(θ(n)

i )−ε}∧∂.

Then, with M
(n)
∂ := M

(n)
T , n ≥ 1,

Y ∗i ≥ ρi(Hτ
(n)
i

) = ρi(Hτ
(n)
i

1
τ
(n)
i <∂

)

≥ ρi
(

(M
(n)

τ
(n)
i

−M (n)
i + ρi(θ

(n)
i )− ε)1

τ
(n)
i <∂

)
≥ ρi

(
M

(n)

τ
(n)
i

−M (n)
i + ρi(θ

(n))− ε
)
− ρi

(
(M

(n)
T −M (n)

i + ρi(θ
(n)
i )− ε)1

τ
(n)
i =∂

)
= ρi(θ

(n)
i )− ε− ρi

(
(M

(n)
T −M (n)

i + ρi(θ
(n)
i )− ε)1

τ
(n)
i =∂

)
, almost surely,

using subadditivity in the last inequality and translation invariance in the last equality. Hence,

ρi

(
θ

(n)
i

)
≤ Y ∗i + ε+ ρi

(∣∣∣M (n)
T −M (n)

i + ρi

(
θ

(n)
i

)
− ε
∣∣∣ 1
τ
(n)
i =∂

)
=: Y ∗i + ε+ ρi

(∣∣∣U (n)
i

∣∣∣ 1
τ
(n)
i =∂

)
, almost surely.
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By (3.10),

ρi

(
1
τ
(n)
i =∂

)
= ρi

(
1∣∣∣θ(n)i −ρi

(
θ
(n)
i

)∣∣∣≥ε
)
≤

Varρi

(
θ

(n)
i

)
ε2

P→ 0,

and since moreover by monotonicity 0 ≤ ρi
(

1
τ
(n)
i =∂

)
≤ ρi (1) = 1, it holds that

ρi

(
1
τ
(n)
i =∂

)
L1→ 0. (B.8)

Next, by subadditivity, monotonicity, and positive homogeneity, we have, for any K > 0,

Eρi
(∣∣∣U (n)

i

∣∣∣ 1
τ
(n)
i =∂

)
≤ Eρi

(∣∣∣U (n)
i

∣∣∣ 1
τ
(n)
i =∂

1∣∣∣U(n)
i

∣∣∣≤K
)

+ Eρi
(∣∣∣U (n)

i

∣∣∣ 1
τ
(n)
i =∂

1∣∣∣U(n)
i

∣∣∣>K
)

≤ KEρi
(

1
τ
(n)
i =∂

)
+ Eρi

(∣∣∣U (n)
i

∣∣∣ 1∣∣∣U(n)
i

∣∣∣>K
)
.

Now Propositions B.2 and B.4 below imply that the family
(
U

(n)
i

)
n≥1

is also uniformly inte-

grable in the sense of (3.11), i.e., there exists K1,ε large enough such that

sup
n≥1

Eρi
(∣∣∣U (n)

i

∣∣∣ 1∣∣∣U(n)
i

∣∣∣>K
)
< ε,

hence
Eρi

(∣∣∣U (n)
i

∣∣∣ 1
τ
(n)
i =∂

)
≤ KεEρi

(
1
τ
(n)
i =∂

)
︸ ︷︷ ︸
→0 by (B.8)

+ ε ≤ 2ε,

for n > NK1,ε,ε. Thus, since ε > 0 was arbitrary,

limn≥1Eρi
(
θ

(n)
i

)
≤ EY ∗i + 3ε.

On the other hand, by monotonicity and the duality theorem for subadditive functionals,

Eρi
(
θ

(n)
i

)
≥ EY ∗i ,

so it follows that
lim
n→∞

Eρi
(
θ

(n)
i

)
= EY ∗i .

Proposition B.2 Suppose (An)n≥1 , and (Bn)n≥1 satisfy (3.11), i.e.,

sup
n≥1

Eρi
(
|An| 1|An|>Kε

)
< ε and sup

n≥1
Eρi

(
|Bn| 1|Bn|>Kε

)
< ε,

for Kε large enough. If ρi is subadditive and positively homogeneous, then also (An +Bn)n≥1

satisfies (3.11).
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Proof of Proposition B.2. By (P1),

Eρi
(
|An +Bn| 1|An+Bn|>2Kε

)
≤ Eρi

(
(|An|+ |Bn|) 1|An|+|Bn|>2Kε

)
≤ Eρi

(
2 |An| 1|An|>Kε + 2 |Bn| 1|Bn|>Kε

)
≤ 2Eρi

(
|An| 1|An|>Kε

)
+ 2Eρi

(
|Bn| 1|Bn|>Kε

)
< 4ε,

hence An +Bn satisfies (3.11) also.

Lemma B.3 Assume (P1) and (P3). (An)n≥1 (with w.l.o.g. An ≥ 0) satisfy (3.11) if and
only if

(i) supn≥1 ρi (An) <∞;

(ii) For every ε > 0 there exists δ > 0 such that for all B ∈ F with ρi (1B) < δ, it holds that
supn≥1 ρi (An1B) < ε.

Proof of Lemma B.3. (=⇒) Let (An)n≥1 (with w.l.o.g. An ≥ 0) satisfy (3.11). Then, for
any n ≥ 1, by subadditivity, monotonicity, and positive homogeneity,

ρi (An) ≤ ρi (An1An≤K) + ρi (An1An>K) ≤ Kρi (1An≤K) + 1 ≤ K + 1,

for large enough K. So supn≥1 ρi (An) ≤ K + 1, whence (i). Now let ε > 0 and K be so large
that

sup
n≥1

ρi (An1An>K) < ε/2.

For any B ∈ F with ρi (1B) < ε/(2K) =: δ we then have

ρi (An1B) ≤ ρi (An1B1An≤K) + ρi (An1B1An>K) ≤ Kρi (1B) + ρi (An1An>K) < ε.

(⇐=) Let (An)n≥1 satisfy (i) and (ii) for ε > 0 and δ > 0. For any n ≥ 1 we have

ρi (An) ≥ ρi (An1An>K) ≥ Kρi (1An>K) ,

so due to (i),
M := sup

n≥1
ρi (An) ≥ K sup

n≥1
ρi (1An>K) .

Hence,

sup
n≥1

ρi (1An>K) ≤ M

K
< δ,

if K > M/δ. Thus, due to (ii), for all n ≥ 1, and K > M/δ,

ρi (An1An>K) < ε.

Proposition B.4 Let ρi be subadditive and positively homogeneous, and let (An)n≥1 satisfy
(3.11). Then (ρi (An))n≥1 also satisfy (3.11).
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Proof of Proposition B.4. Due to Lemma B.3, (i) and (ii) apply for (An)n≥1 . Let ε > 0
and take δ > 0 such that (ii) holds for (An)n≥1 . Observe that

ρi (An) = ρi (ρi (An)) ≥ ρi
(
ρi (An) 1ρi(An)>K

)
≥ Kρi

(
1ρi(An)>K

)
.

Hence,

sup
n≥1

ρi
(
1ρi(An)>K

)
≤ 1

K
sup
n≥1

ρi (An) =:
M

K
.

Take K such that M/K < δ. Then, for all n ≥ 1,

ρi
(
ρi (An) 1ρi(An)>K

)
= ρi

(
An1ρi(An)>K

)
< ε,

since ρi
(
1ρi(An)>K

)
< δ. That is, (ρi (An))n≥1 satisfy (3.11).

Proof of Proposition 3.9. We have

sup
n≥1

Eρi
(∣∣∣M (n)

i

∣∣∣ 1∣∣∣M(n)
i

∣∣∣>K
)

= sup
n≥1

Eρi

 1∣∣∣M (n)
i

∣∣∣η
∣∣∣M (n)

i

∣∣∣1+η
1∣∣∣M(n)

i

∣∣∣>K


≤ 1

Kη
sup
n≥1

Eρi
(∣∣∣M (n)

i

∣∣∣1+η
)
→ 0 for K →∞.

Proof of Theorem 3.10. For L = 1, this follows from Lemma 3.5. Now let us suppose that

Θq
i+ ∈ Fi, for q = 1, . . . , L+ 1, 0 ≤ i < T,

and that the theorem has been proved for L ≥ 1. Then, by induction, we have (i) and (ii),
and so, with j′0 = j1,

ΘL+1
i+ = max

i<j1<j2<···<jL+1

L+1∑
k=1

(
Hjk +M

(L+2−k)
jk−1

−M (L+2−k)
jk

)
= max

i<j1

(
Hj1 +M

(L+1)
i −M (L+1)

j1

+ max
j1<j2<···<jL+1

L+1∑
k=2

(
Hjk +M

(L+1−k+1)
jk−1

−M (L+1−k+1)
jk

))

= max
i<j1

(
Hj1 +M

(L+1)
i −M (L+1)

j1

+ max
j1<j′1<···<j′L

L∑
k=1

(
Hj′k

+M
(L−k+1)
j′k−1

−M (L−k+1)
j′k

))
= max

i<j1

(
Hj1 + ΘL

j1+ +M
(L+1)
i −M (L+1)

j1

)
= max

i<j1

(
Hj1 + ρj1

(
Y ∗,Lj1+1

)
+M

(L+1)
i −M (L+1)

j1

)
.
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Next, since ΘL+1
i+ ∈ Fi, Lemma 3.5 implies

ΘL+1
i+ = ρi

(
Y ∗,L+1
i+1

)
and M

(L+1)
i+1 −M (L+1)

i = Y ∗,L+1
i+1 − ρi

(
Y ∗,L+1
i+1

)
.

C Proofs of Section 4

Proof of Lemma 4.1. Let us define m◦ := Y − ρj (Y) , and write

m◦ −mN = Y −mN − CN + CN − C + C − ρj (Y) .

Hence, due to (4.1),

m◦ −mN L2→ C − ρj (Y) . (C.1)

Then also
ρj
(
m◦ −mN

) L2→ C − ρj (Y) ,

since

E
[∣∣ρj (m◦ −mN

)
− C + ρj (Y)

∣∣2]
(by (C4)) = E

[∣∣ρj (m◦ −mN − C + ρj (Y)
)∣∣2]

(by (3.12) with p = 2) ≤ C2E
[∣∣m◦ −mN − C + ρj (Y)

∣∣2]→ 0,

because of (C.1). Due to subadditivity and ρj (m◦) = 0, we have

ρj
(
m◦ −mN

)
≥ ρj (m◦)− ρj

(
mN
)

= 0.

Thus, we must have C − ρj (Y) ≥ 0. By the same reasoning,

mN −m◦
L2→ ρj (Y)− C implies ρj

(
mN −m◦

) L2→ ρj (Y)− C,

and now subadditivity and ρj (m◦) = 0 implies ρj
(
mN −m◦

)
≥ 0. Hence, we must also have

that ρj (Y)− C ≥ 0. Thus, ρj (Y) = C, and then the other statement follows from (C.1).

Proof of Theorem 4.3. We will prove the theorem through an induction for l = 1, . . . , L.
For l = 1 we do a second induction over j = T, T − 1, . . . , 0. Assume that (4.10)–(4.12)

hold for j + 1 ≤ t. It follows from the Law of Large Numbers and the induction assumption

for l− 1 and j+ 1 that M
l,K,N
j+1 and cl,K,Nj+1 converge a.s. to the projections of M∗,lj+1 and c∗,lj+1 on

the spaces {E(β1,...,βK+1)
j |(β1, . . . , βK+1) ∈ RK′} and {

∑K′′

k=1 γkψk(Xj)|γk ∈ R, k = 1, . . . ,K ′′}.
Letting K = min(K ′,K ′′) tend to infinity and using that both spaces form a basis, we can use
Corollary 4.2 to conclude that (4.10)–(4.12) hold for j. This completes the induction over j,
and hence also the induction over l.

For simplicity, we drop the indexes K,N, n in the sequel. So we write clj = cl,K,Nj (Xn
j ). We

let clj and c∗,lj be a set of approximate and true continuation functions, respectively, let

U
l
j = fj(Xj) + cl−1

j (Xj), U∗,lj = fj(Xj) + c∗,l−1
j (Xj),
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let M
l
j and M∗,lj be a set of approximate and true ρ-Doob martingales, and let Y

l
j and Y ∗,lj be

a set of approximate and true upper Snell envelopes. Then consider

max
j≤r≤T

(
U
l
r −M

l
r

)
− Y ∗,lj = max

j≤r≤T

(
U
l
r −M

l
r

)
− max
j≤r≤T

(
U∗,lr −M∗,lr

)
= max

j≤r≤T

(
U
l
r −M

l
r

)
− max
j≤r≤T

(
U
l
r −M∗,lr

)
+ max
j≤r≤T

(
U
l
r −M∗,lr

)
− max
j≤r≤T

(
U∗,lr −M∗,lr

)
≤ max

j≤r≤T

(
U
l
r −M

l
r −

(
U
l
r −M∗,lr

))
+ max
j≤r≤T

(
U
l
r −M∗,lr −

(
U∗,lr −M∗,lr

))
= max

j≤r≤T

(
M∗,lr −M

l
r

)
+ max
j≤r≤T

(
cl−1
r − c∗,l−1

r

)
≤ max

j≤r≤T

∣∣∣M∗,lr −M l
r

∣∣∣+ max
j≤r≤T

∣∣∣cl−1
r − c∗,l−1

r

∣∣∣ .
Similarly,

Y ∗,lj − max
j≤r≤T

(
U
l
r −M

l
r

)
= max

j≤r≤T

(
U∗,lr −M∗,lr

)
− max
j≤r≤T

(
U
l
r −M

l
r

)
= max

j≤r≤T

(
U∗,lr −M∗,lr

)
− max
j≤r≤T

(
U
l
r −M∗,lr

)
+ max
j≤r≤T

(
U
l
r −M∗,lr

)
− max
j≤r≤T

(
U
l
r −M

l
r

)
= max

j≤r≤T

(
U∗,lr −M∗,lr − max

j≤r′≤T

(
U
l
r′ −M

∗,l
r′

))
+ max
j≤r≤T

(
U
l
r −M∗,lr − max

j≤r′≤T

(
U
l
r′ −M

l
r′

))
≤ max

j≤r≤T

(
c∗,l−1
r − cl−1

r

)
+ max
j≤r≤T

(
M

l
r −M∗,lr

)
≤ max

j≤r≤T

∣∣∣M∗,lr −M l
r

∣∣∣+ max
j≤r≤T

∣∣∣cl−1
r − c∗,l−1

r

∣∣∣ ,
whence ∣∣∣∣Y ∗,lj − max

j≤r≤T

(
U
l
r −M

l
r

)∣∣∣∣ ≤ max
j≤r≤T

∣∣∣M∗,lr −M l
r

∣∣∣+ max
j≤r≤T

∣∣∣cl−1
r − c∗,l−1

r

∣∣∣ .
That is, by monotonicity and subadditivity,

ρj

(∣∣∣∣Y ∗,lj − max
j≤r≤T

(
U
l
r −M

l
r

)∣∣∣∣)
≤ ρj

(
max
j≤r≤T

∣∣∣M∗,lr −M l
r

∣∣∣)+ ρj

(
max
j≤r≤T

∣∣∣cl−1
r − c∗,l−1

r

∣∣∣) . (C.2)
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By the first part of the theorem, the right-hand side in (C.2) goes to zero. Thus,∣∣∣∣Y ∗,lj − ρj
(

max
j≤r≤T

(
U
l
r −M

l
r

))∣∣∣∣ =

∣∣∣∣ρj (Y ∗,lj

)
− ρj

(
max
j≤r≤T

(
U
l
r −M

l
r

))∣∣∣∣
≤ ρj

(∣∣∣∣Y ∗,lj − max
j≤r≤T

(
U
l
r −M

l
r

)∣∣∣∣)
≤ ρj

(
max
j≤r≤T

∣∣∣M∗,lr −M l
r

∣∣∣)+ ρj

(
max
j≤r≤T

∣∣∣cl−1
r − c∗,l−1

r

∣∣∣)
tends to zero as well. (Here, the first inequality follows as, by monotoniciy and subadditivity,
ρ(X) ≤ ρ(Y + |X−Y |)) ≤ ρ(Y )+ρ(|X−Y |) yielding ρ(X)−ρ(Y ) ≤ ρ(|X−Y |), and switching
the roles of X and Y then gives the desired inequality.)

Proof of Proposition 4.4. We write

Θq
i = max

[
max

i<j2<···<jq

(
fi(Xi) +

q∑
l=2

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1

))
,

max
i<j1<j2<···<jq

q∑
l=1

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1

)]

= max

[
max

i+1≤j2<···<jq

(
fi(Xi) +M

q−1
i −M q−1

i+1

+

q∑
l=2

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1∨i+1

))
,

max
i+1≤j1<j2<···<jq

M
q
i −M

q
i+1 +

q∑
l=1

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1∨i+1

)]

= max

[
fi(Xi) +M

q−1
i −M q−1

i+1

+ max
i+1≤j2<···<jq

q∑
l=2

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1∨i+1

)
,

M
q
i −M

q
i+1 + max

i+1≤j1<j2<···<jq

q∑
l=1

(
fjl(Xjl)−M

q−l+1
jl

+M
q−l+1
jl−1∨i+1

)]
,

which is equal to (4.13).

D Proofs of Section 5

Proof of Proposition 5.3. The result follows by analogous arguments as those in the proof
of Theorem 21 of Krätschmer et al. [50].

Proof of Theorem 5.4. First, E
[
Ỹ low,L

0

]
≤ Y ∗,L0 follows by (5.14). Second, the convergence

statement follows by applying Proposition 5.3 and Theorem 4.3 three times.
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Proof of Proposition 5.5. We write

EQ

[
U −MN

T

]
= EQ [U ]− EQ

[
M

N
T

]
= EQ [U ]− EQ

[ ∫ T

0
ZNs dWQ

s +

∫ T

0
Z̃Ns dÑQ

s

+

∫ T

0

{
ZNs qs + Z̃Ns (λs − λP)− g(s,ZNs , Z̃Ns )

}
ds

]
= EQ [U ] + 0 + 0 = EQ [U ] ,

where we used in the one but last equality that the convex conjugate satisfies

sup
q,λ
{zq + z̃(λ− λP)− g(t, z, z̃)} = 0,

as g is positively homogeneous. Moreover, this equality is attained above in (qs, λs − λP) ∈
∂g(s,ZNs , Z̃Ns ).

Proof of Theorem 5.6. First, E
[
Ỹ upp,L

0

]
≥ Y ∗,L0 follows by (5.19). Second, the two con-

vergence statements follow by applying Proposition 5.3 and Theorem 4.3 three times and two
times, respectively.

Proof of Proposition 5.7. Fix α ∈ R. Applying Itô’s generalized formula yields

eαt|δYt|2 +

∫ T

t
eαs|δZNs |2ds+

∑
s≥t: δY jumps at s

eαs(|δYs|2 − |δYs−|2 − 2δYs−δZ̃Ns )

= eαT |δξ|2 +

∫ T

t
eαs
{

2δYs(g(ZNs , Z̃Ns )− g(Z ′s, Z̃
′
s))− α|δYs|2

}
ds

− 2

∫ T

t
eαsδYsδZNs dWs − 2

∫ T

t
eαsδYsδZ̃Ns dÑs

≤ eαT |δξ|2 +

∫ T

t
eαs
{
L2|δYs|2 + |δZNs |2 + |δZ̃Ns |2 − α|δYs|2

}
ds

− 2

∫ T

t
eαsδYsδZNs dWs − 2

∫ T

t
eαsδYsδZ̃Ns dÑs,

using the Lipschitz continuity of g in the equality, and that 2ab ≤ La2 + b2

L where L is the
Lipschitz constant of g in the inequality. Choosing α = L2 and observing that∑

s≥t: δY jumps at s

eαs(|δYs|2 − |δYs−|2 − 2δYs−δZ̃Ns ) =
∑

s≥t: δY jumps at s

eαs|δZ̃Ns |2,
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(which is the quadratic variation of the jump part of eαs/2Ys) we obtain, for t = 0,

|δY0|2 +

∫ T

0
eαs|δZNs |2ds+

∑
s≥0: δY jumps at s

eαs|δZ̃Ns |2

≤ eL2T |δξ|2 +

∫ T

0
eαs
{
|δZNs |2 + |δZ̃Ns |2

}
ds

− 2

∫ T

0
eαsδYsδZNs dWs − 2

∫ T

0
eαsδYsδZ̃Ns dÑs.

Taking expectations on both sides and cancelling the δZ and δZ̃ terms corresponding to the
quadratic variation yields the proposition.

E Additional Tables

L 1 2 3 4 5

LB 0.9722 1.7389 2.3707 2.8969 3.3350
s.e. 0.0012 0.0018 0.0023 0.0027 0.0031

Y
N4,L

0 0.9869 1.7603 2.3953 2.9235 3.3635
TE 0.0682 0.1046 0.1352 0.1631 0.1849
UB 1.0550 1.8649 2.5306 3.0866 3.5484

Table 8: Bounds for δ1 = 0, δ2 = 0 and J = 0.06

L 1 2 3 4 5

LB 0.9884 1.7727 2.4173 2.9625 3.4123
s.e. 0.0015 0.0025 0.0032 0.0040 0.0045

Y
N4,L

0 1.0120 1.8091 2.4672 3.0184 3.4806
TE 0.0764 0.1102 0.1365 0.1586 0.1791
UB 1.0903 1.9221 2.6071 3.1810 3.6642

Table 9: Bounds for δ1 = 1
10 , δ2 = 0 and J = 0.06

L 1 2 3 4 5

LB 0.9999 1.8066 2.4640 3.0228 3.4831
s.e. 0.0021 0.0037 0.0049 0.0061 0.0071

Y
N4,L

0 1.0370 1.8587 2.5407 3.1150 3.5996
TE 0.0747 0.1095 0.1413 0.1695 0.1942
UB 1.1196 1.9797 2.6969 3.3023 3.8142

Table 10: Bounds for δ1 = 1
5 , δ2 = 0 and J = 0.06
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L 1 2 3 4 5

LB 0.9776 1.7484 2.3814 2.9123 3.3529
s.e. 0.0020 0.0033 0.0044 0.0054 0.0062

Y
N4,L

0 1.0028 1.7907 2.4386 2.9790 3.4302
TE 0.0657 0.1003 0.1301 0.1569 0.1807
UB 1.0754 1.9015 2.5823 3.1524 3.6300

Table 11: Bounds for δ1 = 0, δ2 = 1
5 and J = 0.06

L 1 2 3 4 5

LB 0.9929 1.7811 2.4296 2.9688 3.4244
s.e. 0.0023 0.0038 0.0052 0.0063 0.0072

Y
N4,L

0 1.0275 1.8398 2.5113 3.0748 3.5483
TE 0.0740 0.1106 0.1395 0.1654 0.1875
UB 1.1093 1.9620 2.6655 3.2576 3.7555

Table 12: Bounds for δ1 = 1
10 , δ2 = 1

5 and J = 0.06

L 1 2 3 4 5

LB 1.0026 1.8031 2.4755 3.0091 3.4702
s.e. 0.0028 0.0049 0.0067 0.0081 0.0094

Y
N4,L

0 1.0536 1.8896 2.5848 3.1715 3.6676
TE 0.0749 0.1097 0.1420 0.1699 0.1947
UB 1.1365 2.0109 2.7418 3.3592 3.8828

Table 13: Bounds for δ1 = 1
5 , δ2 = 1

5 and J = 0.06
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